Theory of Computation Lecture Notes

Prof. Yuh-Dauh Lyuu

Dept. Computer Science & Information Engineering

and

Department of Finance

National Taiwan University

Class Information

- Papadimitriou. Computational Complexity. 2nd printing. Addison-Wesley. 1995.
 - We more or less follow the topics of the book.
 - More "advanced" materials may be added.
- You may want to review discrete mathematics.

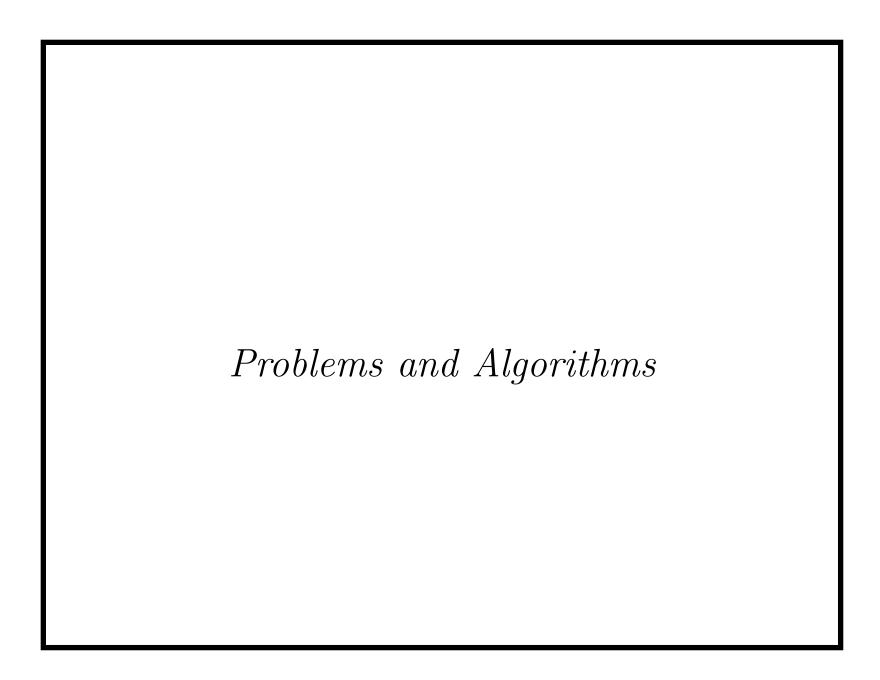
Class Information (concluded)

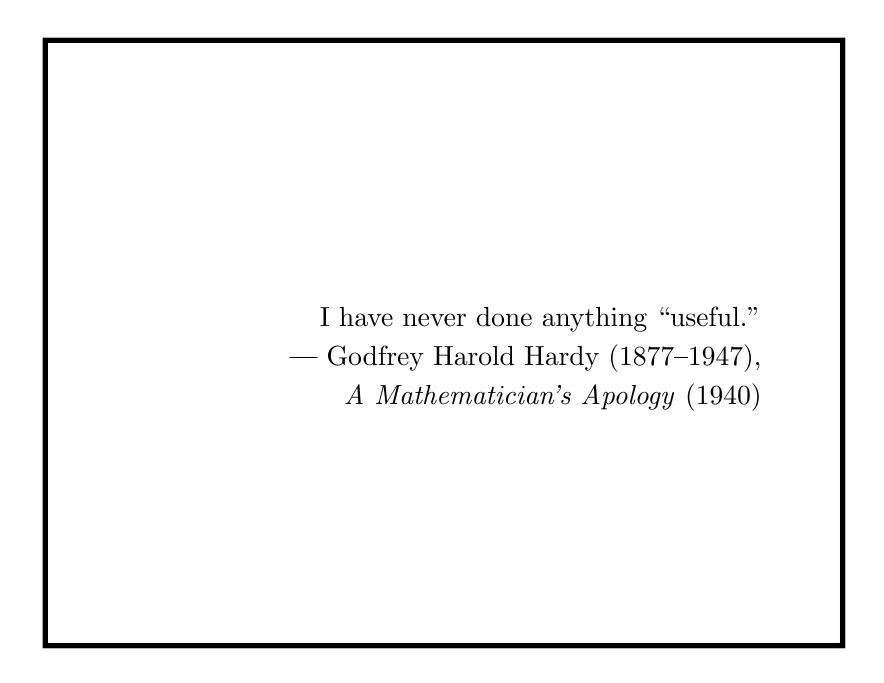
- More information and lecture notes can be found at www.csie.ntu.edu.tw/~lyuu/complexity.html
 - Homeworks, exams, solutions and teaching assistants will be announced there.
- Please ask many questions in class.
 - The best way for me to remember you in a large class.^a

^a "[A] science concentrator [...] said that in his eighth semester of [Harvard] college, there was not a single science professor who could identify him by name." (*New York Times*, September 3, 2003.)

Grading

- Homeworks.
 - Do not copy others' homeworks.
 - Do not give your homeworks for others to copy.
- Two to three exams.
- You must show up for the exams in person.
- If you cannot make it to an exam, please email me or a TA beforehand (unless there is a legitimate reason).
- Missing the final exam will automatically earn a "fail" grade.





What This Course Is All About

Computation: What is computation?

Computability: What can be computed?

- There are well-defined problems that cannot be computed.
- In fact, "most" problems cannot be computed.

What This Course Is All About (concluded)

Complexity: What is a computable problem's inherent complexity?

- Some computable problems require at least exponential time and/or space.
 - They are said to be **intractable**.
- Some practical problems require superpolynomial resources unless certain conjectures are disproved.
- Resources besides time and space: Circuit size, circuit layout area, program size, number of random bits, etc.

Tractability and Intractability

- Polynomial in terms of the input size n defines tractability.
 - $-n, n \log n, n^2, n^{90}.$
 - Time, space, and circuit size.
- It results in a fruitful and practical theory of complexity.
- Few practical, tractable problems require a large degree.
- Superpolynomial-time algorithms are seldom practical.

$$- n^{\log n}, 2^{\sqrt{n}}, ^{a} 2^{n}, n! \sim \sqrt{2\pi n} (n/e)^{n}.$$

^aSize of depth-3 circuits to compute the majority function (Wolfovitz (2006)).

Growth of E. Coli^a

- Under ideal conditions, *E. Coli* bacteria divide every 20 minutes.
- In two days, a single E. Coli bacterium would become 2^{144} bacteria.
- They would weigh 2,664 times the Earth!

^aNick Lane, Power, Sex, Suicide: Mitochondria and the Meaning of Life (2005).

Growth of Factorials

n	n!	n	n!
1	1	9	362,880
2	2	10	3,628,800
3	6	11	39,916,800
4	24	12	479,001,600
5	120	13	6,227,020,800
6	720	14	87,178,291,200
7	5040	15	1,307,674,368,000
8	40320	16	20,922,789,888,000

Moore's Law^a to the Rescue?^b

- Moore's law says the computing power doubles every 1.5 years.
- So the computing power grows like

$$4^{y/3}$$

where y is the number of years from now.

- Assume Moore's law holds forever.
- Can you let the law take care of exponential complexity?

^aMoore (1965).

^bContributed by Ms. Amy Liu (J94922016) on May 15, 2006. Thanks also to a lively discussion on September 14, 2010.

Moore's Law to the Rescue (continued)?

- Suppose a problem takes a^n seconds of CPU time to solve now, where n is the input length.
- The same problem will take

$$\frac{a^n}{4^{y/3}}$$

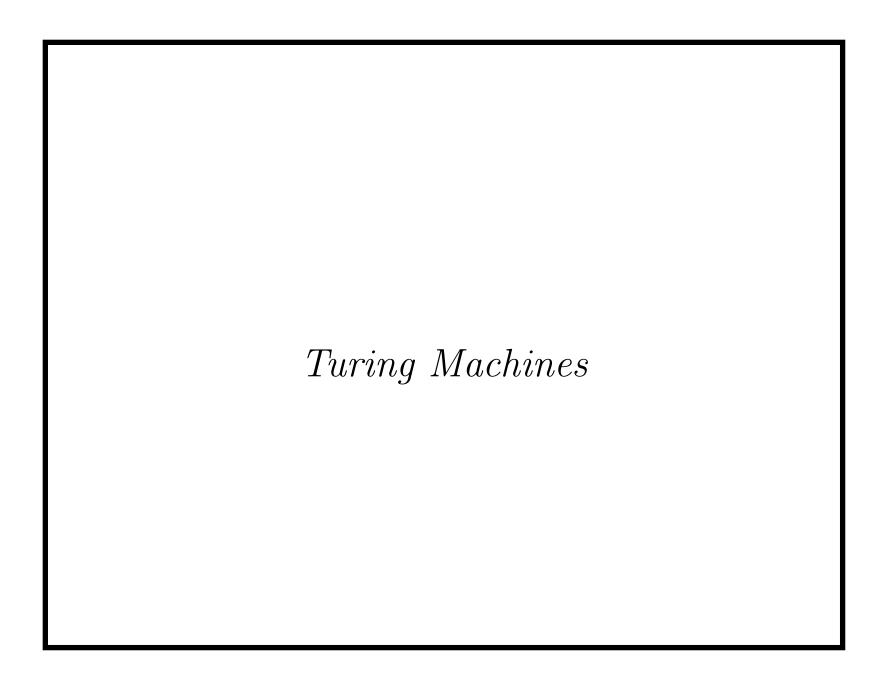
seconds to solve y years from now.

- The hardware $3n \log_4 a$ years from now takes 1 second to solve it.
- The overall complexity is linear in n, in practice.

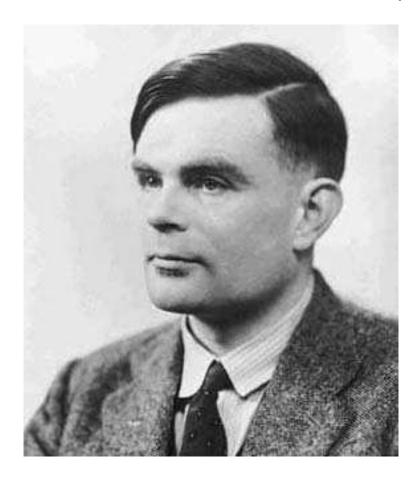
Moore's Law to the Rescue (concluded)?

- Potential objections:
 - Moore's law may not hold forever.
 - The total number of operations remains the same; so the algorithm remains exponential in complexity.^a
 - The hardware $O(\log_4 n)$ years from now will take 1 second to solve a linear-time algorithm.
- What is a "good" theory on computational complexity?

^aContributed by Mr. Hung-Jr Shiu (D00921020) on September 14, 2011.



Alan Turing (1912–1954)



What Is Computation?

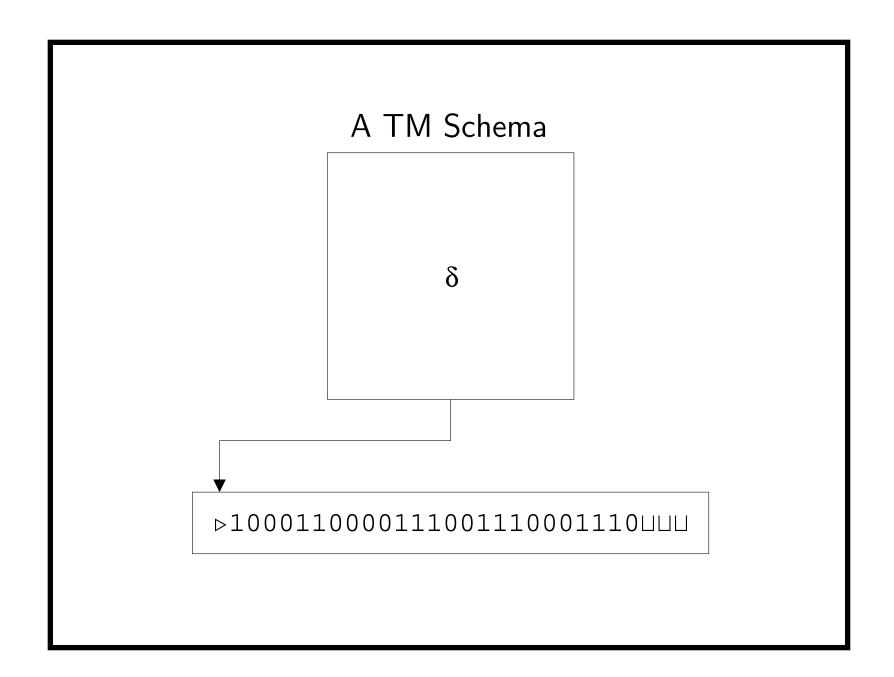
- That can be coded in an **algorithm**.^a
- An algorithm is a detailed step-by-step method for solving a problem.
 - The Euclidean algorithm for the greatest common divisor is an algorithm.
 - "Let s be the least upper bound of compact set A" is not an algorithm.
 - "Let s be a smallest element of a finite-sized array" can be solved by an algorithm.

^aMuhammad ibn Mūsā Al-Khwārizmī (780–850).

Turing Machines^a

- A Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s)$.
- K is a finite set of states.
- $s \in K$ is the **initial state**.
- Σ is a finite set of **symbols** (disjoint from K).
 - $-\Sigma$ includes \coprod (blank) and \triangleright (first symbol).
- $\delta: K \times \Sigma \to (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times \Sigma \times \{\leftarrow, \to, -\}$ is a **transition function**.
 - $-\leftarrow$ (left), \rightarrow (right), and (stay) signify cursor movements.

^aTuring (1936).



More about δ

- The program has the **halting state** (h), the **accepting state** ("yes"), and the **rejecting state** ("no").
- Given current state $q \in K$ and current symbol $\sigma \in \Sigma$,

$$\delta(q,\sigma) = (p,\rho,D).$$

- It specifies:
 - * The next state p;
 - * The symbol ρ to be written over σ ;
 - * The direction D the cursor will move afterwards.
- Assume $\delta(q, \triangleright) = (p, \triangleright, \rightarrow)$.
 - So the cursor never falls off the left end of the string.

More about δ (concluded)

• Think of the program as lines of codes:

$$\delta(q_1, \sigma_1) = (p_1, \rho_1, D_1),$$

$$\delta(q_2, \sigma_2) = (p_2, \rho_2, D_2),$$

$$\vdots$$

$$\delta(q_n, \sigma_n) = (p_n, \rho_n, D_n).$$

- Assume the state is q and the symbol under the cursor σ .
- The line of code that matches (q, σ) is executed.^a
- Then the process is repeated.

^aSo there should be one and only one instruction for every possible pair (q, σ) . Contributed by Mr. Ya-Hsun Chang (B96902025, R00922044) on September 13, 2011.

The Operations of TMs

- Initially the state is s.
- The string on the tape is initialized to a \triangleright , followed by a finite-length string $x \in (\Sigma \{ \sqcup \})^*$.
- x is the **input** of the TM.
 - The input must not contain | |s (why?)!
- The cursor is pointing to the first symbol, always a \triangleright .
- The TM takes each step according to δ .
- The cursor may overwrite \square to make the string longer during the computation.

"Physical" Interpretations

- The tape: computer memory and registers.
 - Except that the tape can be lengthened on demand.
- δ : program.
 - A program has a *finite* size.
- K: instruction numbers.
- s: "main()" in C.
- Σ : alphabet much like the ASCII code.

The Halting of a TM

• A TM M may halt in three cases.

"yes": M accepts its input x, and M(x) = "yes".

"no": M rejects its input x, and M(x) = "no".

- h: M(x) = y means the string (tape) consists of a \triangleright , followed by a finite string y, whose last symbol is not \square , followed by a string of \square s.
 - -y is the **output** of the computation.
 - -y may be empty denoted by ϵ .
- If M never halts on x, then write $M(x) = \nearrow$.

Why Turing Machines?

- Because of the simplicity of the TM, the model has the advantage when it comes to complexity issues.
- One can conceivably develop a complexity theory based on something similar to C++ or Java, say.
- But the added complexity does not yield additional fundamental insights.
- We will describe TMs in pseudocode.

Remarks

- A problem is computable if there is a TM that halts with the correct answer.
- A computation model should be "physically" realizable.
- Although a TM requires a tape of infinite length, which is not realizable, it is not a major conceptual problem.^a
 - Imagine you are living next to a paper mill, while carrying out the TM program using pencil and paper.
 - The mill will produce extra paper if needed.

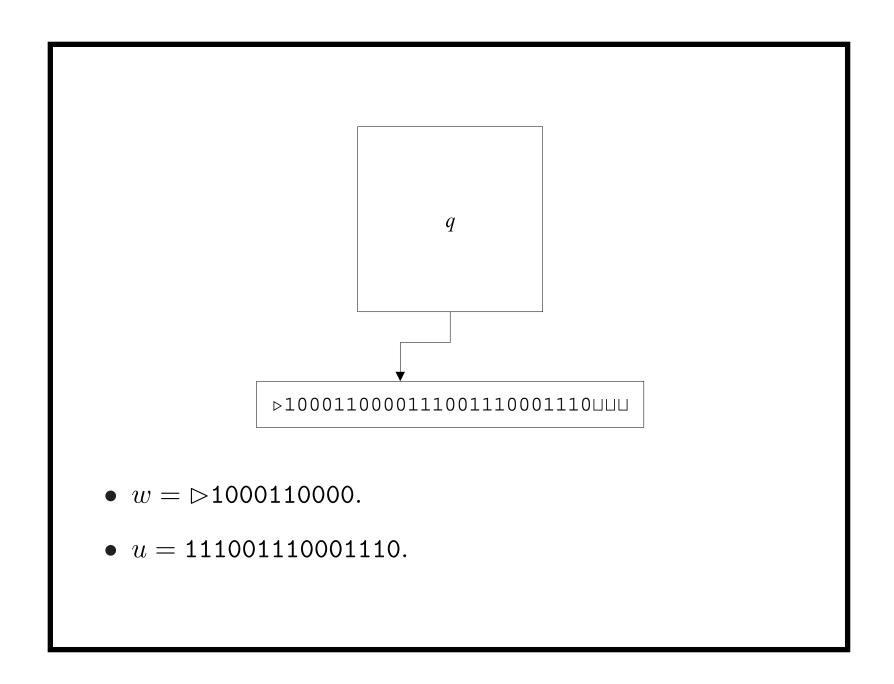
^aThanks to a lively discussion on September 20, 2006.

The Concept of Configuration

- A **configuration** is a complete description of the current state of the computation.
- The specification of a configuration is sufficient for the computation to continue as if it had not been stopped.
 - What does your PC save before it sleeps?
 - Enough for it to resume work later.
- Similar to the concept of state in Markov process.

Configurations (concluded)

- A configuration is a triple (q, w, u):
 - $-q \in K$.
 - $-w \in \Sigma^*$ is the string to the left of the cursor (inclusive).
 - $-u \in \Sigma^*$ is the string to the right of the cursor.
- Note that (w, u) describes both the string and the cursor position.



Yielding

- Fix a TM M.
- Configuration (q, w, u) yields configuration (q', w', u') in one step,

$$(q, w, u) \xrightarrow{M} (q', w', u'),$$

if a step of M from configuration (q, w, u) results in configuration (q', w', u').

- $(q, w, u) \xrightarrow{M^k} (q', w', u')$: Configuration (q, w, u) yields configuration (q', w', u') after $k \in \mathbb{N}$ steps.
- $(q, w, u) \xrightarrow{M^*} (q', w', u')$: Configuration (q, w, u) yields configuration (q', w', u').

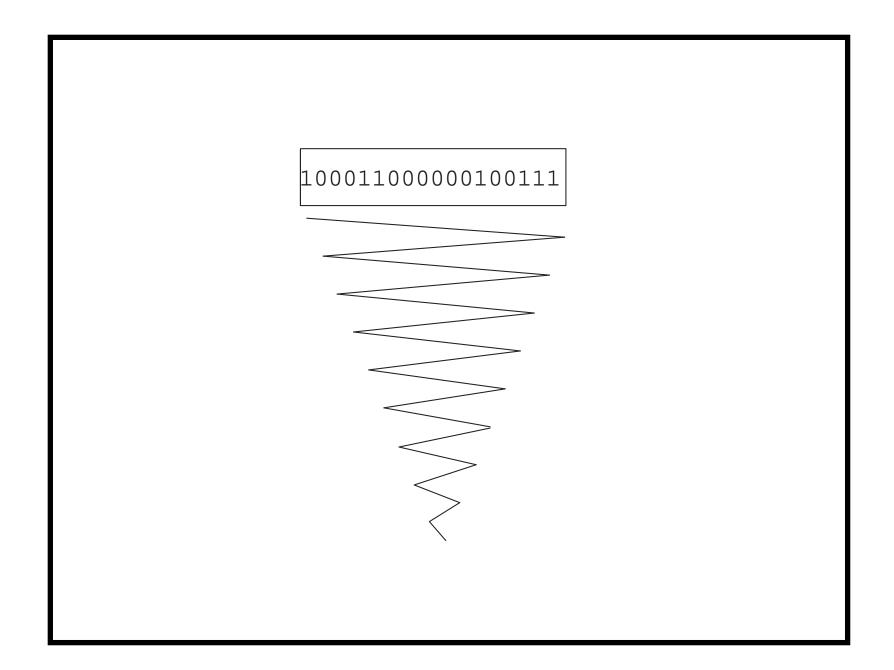
Example: How To Insert a Symbol

- We want to compute f(x) = ax.
 - The TM moves the last symbol of x to the right by one position.
 - It then moves the next to last symbol to the right,
 and so on.
 - The TM finally writes a in the first position.
- The total number of steps is O(n), where n is the length of x.

Palindromes

- A string is a **palindrome** if it reads the same forwards and backwards (e.g., 001100).
- A TM program can be written to recognize palindromes:
 - It matches the first character with the last character.
 - It matches the second character with the next to last character, etc. (see next page).
 - "yes" for palindromes and "no" for nonpalindromes.
- This program takes $O(n^2)$ steps.
- We cannot do better.^a

^aHennie (1965).



Decidability and Recursive Languages

- Let $L \subseteq (\Sigma \{ \coprod \})^*$ be a **language**, i.e., a set of strings of symbols with a *finite* length.
 - For example, $\{0, 01, 10, 210, 1010, \ldots\}$.
- Let M be a TM such that for any string x:
 - If $x \in L$, then M(x) = "yes."
 - If $x \notin L$, then M(x) = "no."
- We say M decides L.
- If there exists a TM that decides L, then L is recursive.^a

^aLittle to do with the concept of recursive calls.

Recursive Languages: Examples

- The set of palindromes over any alphabet is recursive.^a
- The set of prime numbers $\{2, 3, 5, 7, 11, 13, 17, \dots\}$ is recursive.^b
- The set of C programs that do not contain a while, a for, or a goto is recursive.
- The set of C programs that do not contain an infinite loop is *not* recursive (see p. 119).

^aNeed a program that returns "yes" iff the input is a palindrome.

^bNeed a program that returns "yes" iff the input is a prime.

^cNeed a program that returns "yes" iff the input C code does not contain any of the keywords.