Theory of Computation

Solutions to Homework 5

Problem 1. Let $\mu \equiv E[X]$ and $\sigma^2 \equiv E[(X - \mu)^2]$ be finite. Show that

$$prob\left[\left|X-\mu\right| \ge k\sigma\right] \le 1/k^2$$

for $k \ge 0$. (Hint: The Markov inequality: $prob[Y \ge m] \le E[Y]/m$ if random variable Y takes on only nonnegative values and $m \ge 0$.)

Proof. Let $Y = (X - \mu^2)$ and $m = (k\sigma)^2$, By Markov inequality, it's easy to see that

$$prob[Y \ge m] \le \frac{E[Y]}{m}$$

$$\Rightarrow prob[(X - \mu)^2 \ge (k\sigma)^2] \le \frac{\sigma^2}{(k\sigma)^2}$$

$$\Rightarrow prob[\sqrt{(X - \mu)^2} \ge \sqrt{(k\sigma)^2}] \le \frac{\sigma^2}{k^2 \sigma^2}$$

$$\Rightarrow prob[|X - \mu| \ge k\sigma] \le \frac{1}{k^2}$$

still holds because $(X - \mu)^2$ is a nonnegative value and $(k\sigma)^2 \ge 0$

Problem 2. Show that if SAT has no polynomial circuits, then $coNP \neq BPP$. (Hint: Adleman's theorem states that all languages in BPP have polynomial circuits.)

Proof. Assume that SAT has no polynomial circuits. As all languages in BPP have polynomial circuits by Adleman's theorem, $NP \neq BPP$. Hence

$$coNP \neq coBPP = BPP.$$