Theory of Computation

Solutions to Homework 5

Problem 1. Let $\mu \equiv E[X]$ and $\sigma^{2} \equiv E\left[(X-\mu)^{2}\right]$ be finite. Show that

$$
\operatorname{prob}[|X-\mu| \geq k \sigma] \leq 1 / k^{2}
$$

for $k \geq 0$. (Hint: The Markov inequality: $\operatorname{prob}[Y \geq m] \leq E[Y] / m$ if random variable Y takes on only nonnegative values and $m \geq 0$.)

Proof. Let $Y=\left(X-\mu^{2}\right)$ and $m=(k \sigma)^{2}$, By Markov inequality, it's easy to see that

$$
\begin{aligned}
& \operatorname{prob}[Y \geq m] \leq \frac{E[Y]}{m} \\
\Rightarrow & \operatorname{prob}\left[(X-\mu)^{2} \geq(k \sigma)^{2}\right] \leq \frac{\sigma^{2}}{(k \sigma)^{2}} \\
\Rightarrow & \operatorname{prob}\left[\sqrt{(X-\mu)^{2}} \geq \sqrt{(k \sigma)^{2}}\right] \leq \frac{\sigma^{2}}{k^{2} \sigma^{2}} \\
\Rightarrow & \operatorname{prob}[|X-\mu| \geq k \sigma] \leq \frac{1}{k^{2}}
\end{aligned}
$$

still holds because $(X-\mu)^{2}$ is a nonnegative value and $(k \sigma)^{2} \geq 0$
Problem 2. Show that if SAT has no polynomial circuits, then coNP $\neq B P P$. (Hint: Adleman's theorem states that all languages in BPP have polynomial circuits.)

Proof. Assume that SAT has no polynomial circuits. As all languages in BPP have polynomial circuits by Adleman's theorem, NP \neq BPP. Hence

$$
\operatorname{coNP} \neq \mathrm{coBPP}=\mathrm{BPP} .
$$

