Back to MAXSAT

- In MAXSAT, the ϕ_i 's are clauses.
- Hence $p(\phi_i) \ge 1/2$, which happens when ϕ_i contains a single literal.
- And the heuristic becomes a polynomial-time ϵ -approximation algorithm with $\epsilon = 1/2$.
- If the clauses have k distinct literals, $p(\phi_i) = 1 2^{-k}$.
- And the heuristic becomes a polynomial-time ϵ -approximation algorithm with $\epsilon = 2^{-k}$.
 - This is the best possible for $k \geq 3$ unless P = NP.

^aJohnson (1974).

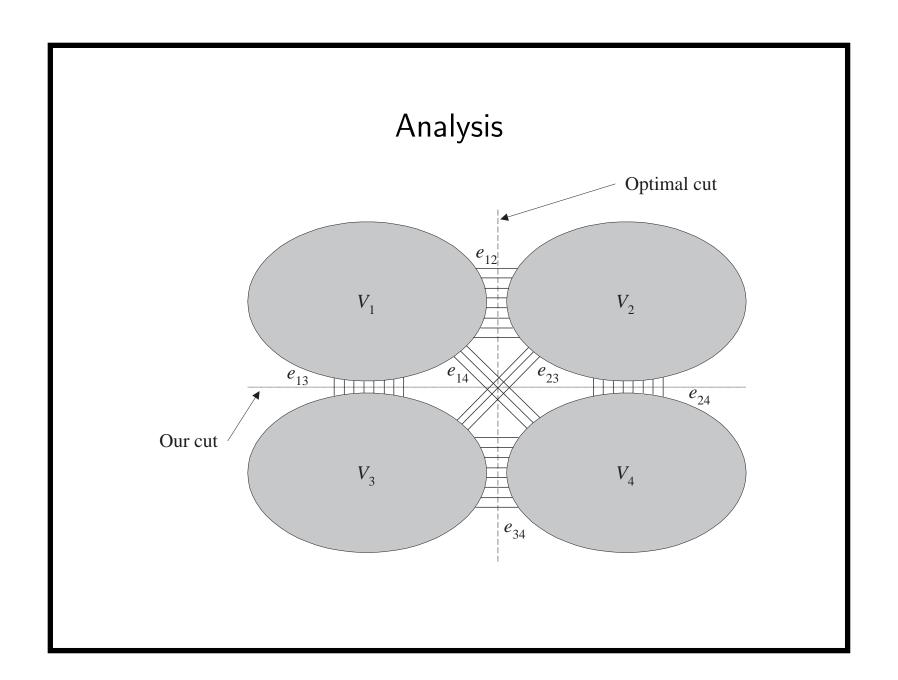
MAX CUT Revisited

- The NP-complete MAX CUT seeks to partition the nodes of graph G = (V, E) into (S, V S) so that there are as many edges as possible between S and V S (p. 318).
- Local search starts from a feasible solution and performs "local" improvements until none are possible.
- Next we present a local search algorithm for MAX CUT.

A 0.5-Approximation Algorithm for MAX CUT

- 1: $S := \emptyset$;
- 2: **while** $\exists v \in V$ whose switching sides results in a larger cut **do**
- 3: Switch the side of v;
- 4: end while
- 5: return S;
- A 0.12-approximation algorithm exists.^a
- 0.059-approximation algorithms do not exist unless NP = ZPP.

^aGoemans and Williamson (1995).



Analysis (continued)

- Partition $V = V_1 \cup V_2 \cup V_3 \cup V_4$, where
 - Our algorithm returns $(V_1 \cup V_2, V_3 \cup V_4)$.
 - The optimum cut is $(V_1 \cup V_3, V_2 \cup V_4)$.
- Let e_{ij} be the number of edges between V_i and V_j .
- For each node $v \in V_1$, its edges to $V_1 \cup V_2$ are outnumbered by those to $V_3 \cup V_4$.
 - Otherwise, v would have been moved to $V_3 \cup V_4$ to improve the cut.

Analysis (continued)

• Considering all nodes in V_1 together, we have

$$2e_{11} + e_{12} \le e_{13} + e_{14}$$

- It is $2e_{11}$ is because each edge in V_1 is counted twice.
- The above inequality implies

$$e_{12} \le e_{13} + e_{14}$$
.

Analysis (concluded)

• Similarly,

$$e_{12} \leq e_{23} + e_{24}$$
 $e_{34} \leq e_{23} + e_{13}$
 $e_{34} \leq e_{14} + e_{24}$

• Add all four inequalities, divide both sides by 2, and add the inequality $e_{14} + e_{23} \le e_{14} + e_{23} + e_{13} + e_{24}$ to obtain

$$e_{12} + e_{34} + e_{14} + e_{23} \le 2(e_{13} + e_{14} + e_{23} + e_{24}).$$

• The above says our solution is at least half the optimum.

Approximability, Unapproximability, and Between

- KNAPSACK, NODE COVER, MAXSAT, and MAX CUT have approximation thresholds less than 1.
 - KNAPSACK has a threshold of 0 (p. 664).
 - But NODE COVER and MAXSAT have a threshold larger than 0.
- The situation is maximally pessimistic for TSP: It cannot be approximated unless P = NP (p. 662).
 - The approximation threshold of TSP is 1.
 - * The threshold is 1/3 if the TSP satisfies the triangular inequality.
 - The same holds for INDEPENDENT SET.

Unapproximability of TSP^a

Theorem 77 The approximation threshold of TSP is 1 unless P = NP.

- Suppose there is a polynomial-time ϵ -approximation algorithm for TSP for some $\epsilon < 1$.
- We shall construct a polynomial-time algorithm for the NP-complete HAMILTONIAN CYCLE.
- Given any graph G = (V, E), construct a TSP with |V| cities with distances

$$d_{ij} = \begin{cases} 1, & \text{if } \{i, j\} \in E\\ \frac{|V|}{1 - \epsilon}, & \text{otherwise} \end{cases}$$

^aSahni and Gonzales (1976).

The Proof (concluded)

- Run the alleged approximation algorithm on this TSP.
- Suppose a tour of cost |V| is returned.
 - This tour must be a Hamiltonian cycle.
- Suppose a tour with at least one edge of length $\frac{|V|}{1-\epsilon}$ is returned.
 - The total length of this tour is $> \frac{|V|}{1-\epsilon}$.
 - Because the algorithm is ϵ -approximate, the optimum is at least 1ϵ times the returned tour's length.
 - The optimum tour has a cost exceeding |V|.
 - Hence G has no Hamiltonian cycles.

KNAPSACK Has an Approximation Threshold of Zero^a

Theorem 78 For any ϵ , there is a polynomial-time ϵ -approximation algorithm for KNAPSACK.

- We have n weights $w_1, w_2, \ldots, w_n \in \mathbb{Z}^+$, a weight limit W, and n values $v_1, v_2, \ldots, v_n \in \mathbb{Z}^+$.
- We must find an $S \subseteq \{1, 2, ..., n\}$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i$ is the largest possible.

^aIbarra and Kim (1975).

^bIf the values are fractional, the result is slightly messier but the main conclusion remains correct. Contributed by Mr. Jr-Ben Tian (R92922045) on December 29, 2004.

• Let

$$V = \max\{v_1, v_2, \dots, v_n\}.$$

- Clearly, $\sum_{i \in S} v_i \leq nV$.
- Let $0 \le i \le n$ and $0 \le v \le nV$.
- W(i, v) is the minimum weight attainable by selecting some of the first i items with a total value of v.
- Set $W(0, v) = \infty$ for $v \in \{1, 2, ..., nV\}$ and W(i, 0) = 0 for i = 0, 1, ..., n.

 $^{^{\}rm a}$ Contributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu (D98922013) on December 28, 2009.

• Then, for $0 \le i < n$,

$$W(i+1,v) = \min\{W(i,v), W(i,v-v_{i+1}) + w_{i+1}\}.$$

- Finally, pick the largest v such that $W(n, v) \leq W$.
- The running time is $O(n^2V)$, not polynomial time.
- Key idea: Limit the number of precision bits.

Define

$$v_i' = 2^b \left\lfloor \frac{v_i}{2^b} \right\rfloor.$$

- This is equivalent to zeroing each v_i 's last b bits.
- From the original instance

$$x = (w_1, \dots, w_n, W, v_1, \dots, v_n),$$

define the approximate instance

$$x' = (w_1, \dots, w_n, W, v'_1, \dots, v'_n).$$

- Solving x' takes time $O(n^2V/2^b)$.
 - The algorithm only performs subtractions on the v_i -related values.
 - So the b last bits can be removed from the calculations.
 - That is, use $v'_i = \left\lfloor \frac{v_i}{2^b} \right\rfloor$ in the calculations.
 - Then multiply the returned value by 2^b .
- The solution S' is close to the optimum solution S:

$$\sum_{i \in S'} v_i \ge \sum_{i \in S'} v_i' \ge \sum_{i \in S} v_i' \ge \sum_{i \in S} (v_i - 2^b) \ge \sum_{i \in S} v_i - n2^b.$$

• Hence

$$\sum_{i \in S'} v_i \ge \sum_{i \in S} v_i - n2^b.$$

- Without loss of generality, assume $w_i \leq W$ for all i.
 - Otherwise, item i is redundant.
- V is a lower bound on OPT.
 - Picking an item with value V is a legitimate choice.
- The relative error from the optimum is $\leq n2^b/V$:

$$\frac{\sum_{i \in S} v_i - \sum_{i \in S'} v_i}{\sum_{i \in S} v_i} \le \frac{\sum_{i \in S} v_i - \sum_{i \in S'} v_i}{V} \le \frac{n2^b}{V}.$$

The Proof (concluded)

- Suppose we pick $b = \lfloor \log_2 \frac{\epsilon V}{n} \rfloor$.
- The algorithm becomes ϵ -approximate (see Eq. (10) on p. 640).
- The running time is then $O(n^2V/2^b) = O(n^3/\epsilon)$, a polynomial in n and $1/\epsilon$.

^aIt hence depends on the *value* of $1/\epsilon$. Thanks to a lively class discussion on December 20, 2006. If we fix ϵ and let the problem size increase, then the complexity is cubic. Contributed by Mr. Ren-Shan Luoh (D97922014) on December 23, 2008.

Pseudo-Polynomial-Time Algorithms

- Consider problems with inputs that consist of a collection of integer parameters (TSP, KNAPSACK, etc.).
- An algorithm for such a problem whose running time is a polynomial of the input length and the *value* (not length) of the largest integer parameter is a **pseudo-polynomial-time algorithm**.^a
- On p. 666, we presented a pseudo-polynomial-time algorithm for KNAPSACK that runs in time $O(n^2V)$.
- How about TSP (D), another NP-complete problem?

^aGarey and Johnson (1978).

No Pseudo-Polynomial-Time Algorithms for TSP (D)

- By definition, a pseudo-polynomial-time algorithm becomes polynomial-time if each integer parameter is limited to having a *value* polynomial in the input length.
- Corollary 42 (p. 335) showed that HAMILTONIAN PATH is reducible to TSP (D) with weights 1 and 2.
- As Hamiltonian path is NP-complete, TSP (D) cannot have pseudo-polynomial-time algorithms unless P = NP.
- TSP (D) is said to be **strongly NP-hard**.
- Many weighted versions of NP-complete problems are strongly NP-hard.

Polynomial-Time Approximation Scheme

- Algorithm M is a **polynomial-time approximation** scheme (**PTAS**) for a problem if:
 - For each $\epsilon > 0$ and instance x of the problem, M runs in time polynomial (depending on ϵ) in |x|.
 - * Think of ϵ as a constant.
 - M is an ϵ -approximation algorithm for every $\epsilon > 0$.

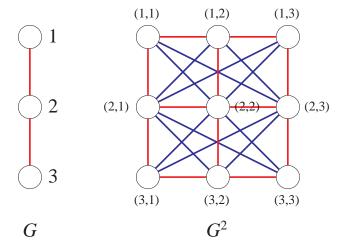
Fully Polynomial-Time Approximation Scheme

- A polynomial-time approximation scheme is **fully polynomial** (**FPTAS**) if the running time depends polynomially on |x| and $1/\epsilon$.
 - Maybe the best result for a "hard" problem.
 - For instance, KNAPSACK is fully polynomial with a running time of $O(n^3/\epsilon)$ (p. 664).

Square of G

- Let G = (V, E) be an undirected graph.
- G^2 has nodes $\{(v_1, v_2) : v_1, v_2 \in V\}$ and edges

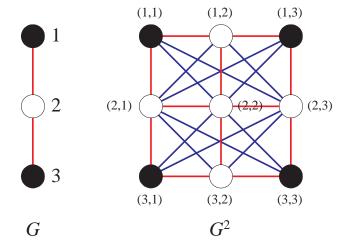
$$\{\{(u, u'), (v, v')\}: (u = v \land \{u', v'\} \in E) \lor \{u, v\} \in E\}.$$



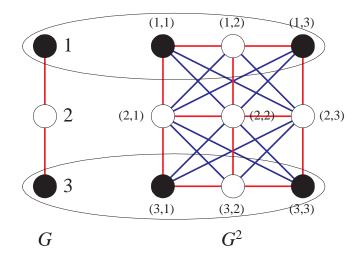
Independent Sets of G and G^2

Lemma 79 G(V, E) has an independent set of size k if and only if G^2 has an independent set of size k^2 .

- Suppose G has an independent set $I \subseteq V$ of size k.
- $\{(u,v):u,v\in I\}$ is an independent set of size k^2 of G^2 .



- Suppose G^2 has an independent set I^2 of size k^2 .
- $U \equiv \{u : \exists v \in V (u, v) \in I^2\}$ is an independent set of G.



• |U| is the number of "rows" that the nodes in I^2 occupy.

The Proof (concluded)^a

- If $|U| \ge k$, then we are done.
- Now assume |U| < k.
- As the k^2 nodes in I^2 cover fewer than k "rows," there must be a "row" in possession of > k nodes of I^2 .
- Those > k nodes will be independent in G as each "row" is a copy of G.

^aThanks to a lively class discussion on December 29, 2004.

Approximability of INDEPENDENT SET

• The approximation threshold of the maximum independent set is either zero or one (it is one!).

Theorem 80 If there is a polynomial-time ϵ -approximation algorithm for INDEPENDENT SET for any $0 < \epsilon < 1$, then there is a polynomial-time approximation scheme.

- Let G be a graph with a maximum independent set of size k.
- Suppose there is an $O(n^i)$ -time ϵ -approximation algorithm for INDEPENDENT SET.
- We seek a polynomial-time ϵ' -approximation algorithm with $\epsilon' < \epsilon$.

- By Lemma 79 (p. 676), the maximum independent set of G^2 has size k^2 .
- Apply the algorithm to G^2 .
- The running time is $O(n^{2i})$.
- The resulting independent set has size $\geq (1 \epsilon) k^2$.
- By the construction in Lemma 79 (p. 676), we can obtain an independent set of size $\geq \sqrt{(1-\epsilon)k^2}$ for G.
- Hence there is a $(1 \sqrt{1 \epsilon})$ -approximation algorithm for INDEPENDENT SET by Eq. (11) on p. 641.

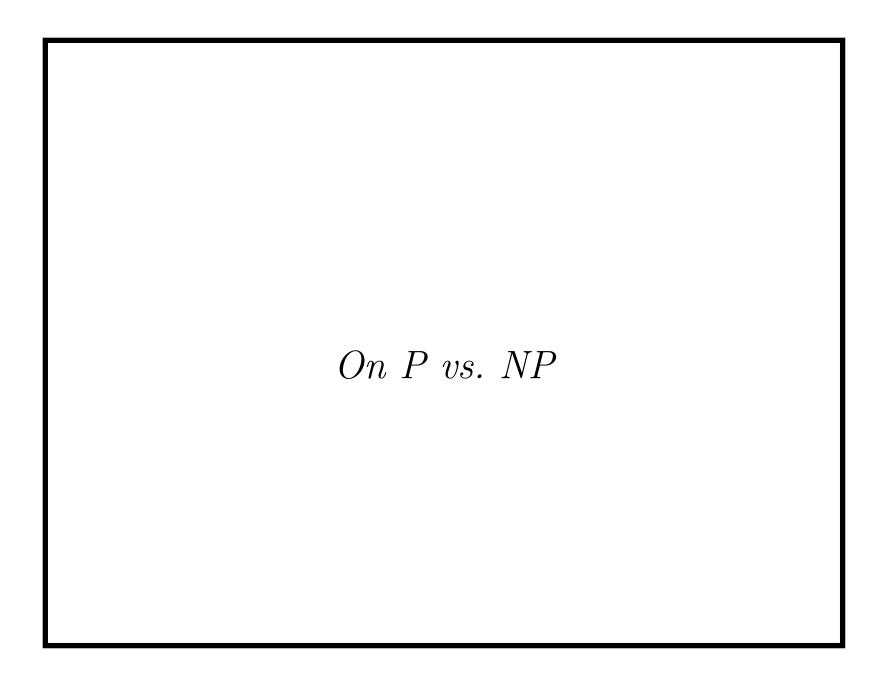
The Proof (concluded)

- In general, we can apply the algorithm to $G^{2^{\ell}}$ to obtain an $(1 (1 \epsilon)^{2^{-\ell}})$ -approximation algorithm for INDEPENDENT SET.
- The running time is $n^{2^{\ell}i}$.a
- Now pick $\ell = \lceil \log \frac{\log(1-\epsilon)}{\log(1-\epsilon')} \rceil$.
- The running time becomes $n^{i\frac{\log(1-\epsilon)}{\log(1-\epsilon')}}$.
- It is an ϵ' -approximation algorithm for INDEPENDENT SET.

^aIt is not fully polynomial.

Comments

- INDEPENDENT SET and NODE COVER are reducible to each other (Corollary 39, p. 312).
- NODE COVER has an approximation threshold at most 0.5 (p. 646).
- But INDEPENDENT SET is unapproximable (see the textbook).
- INDEPENDENT SET limited to graphs with degree $\leq k$ is called k-DEGREE INDEPENDENT SET.
- k-DEGREE INDEPENDENT SET is approximable (see the textbook).



Density^a

The **density** of language $L \subseteq \Sigma^*$ is defined as

$$dens_L(n) = |\{x \in L : |x| \le n\}|.$$

- If $L = \{0, 1\}^*$, then $dens_L(n) = 2^{n+1} 1$.
- So the density function grows at most exponentially.
- For a unary language $L \subseteq \{0\}^*$,

$$\operatorname{dens}_L(n) \leq n+1.$$

- Because
$$L \subseteq \{\epsilon, 0, 00, \dots, \overbrace{00 \cdots 0}^{n}, \dots\}$$
.

^aBerman and Hartmanis (1977).

Sparsity

- Sparse languages are languages with polynomially bounded density functions.
- **Dense languages** are languages with superpolynomial density functions.

Self-Reducibility for SAT

- An algorithm exhibits **self-reducibility** if it finds a certificate by exploiting algorithms for the *decision* version of the same problem.
- Let ϕ be a boolean expression in n variables x_1, x_2, \ldots, x_n .
- $t \in \{0,1\}^j$ is a **partial** truth assignment for x_1, x_2, \dots, x_j .
- $\phi[t]$ denotes the expression after substituting the truth values of t for $x_1, x_2, \ldots, x_{|t|}$ in ϕ .

An Algorithm for SAT with Self-Reduction

We call the algorithm below with empty t.

```
1: if |t| = n then
```

2: **return** $\phi[t]$;

3: else

4: **return** $\phi[t0] \lor \phi[t1];$

5: end if

The above algorithm runs in exponential time, by visiting all the partial assignments (or nodes on a depth-n binary tree).

NP-Completeness and Density^a

Theorem 81 If a unary language $U \subseteq \{0\}^*$ is NP-complete, then P = NP.

- Suppose there is a reduction R from SAT to U.
- We use R to find a truth assignment that satisfies boolean expression ϕ with n variables if it is satisfiable.
- Specifically, we use R to prune the exponential-time exhaustive search on p. 687.
- The trick is to keep the already discovered results $\phi[t]$ in a table H.

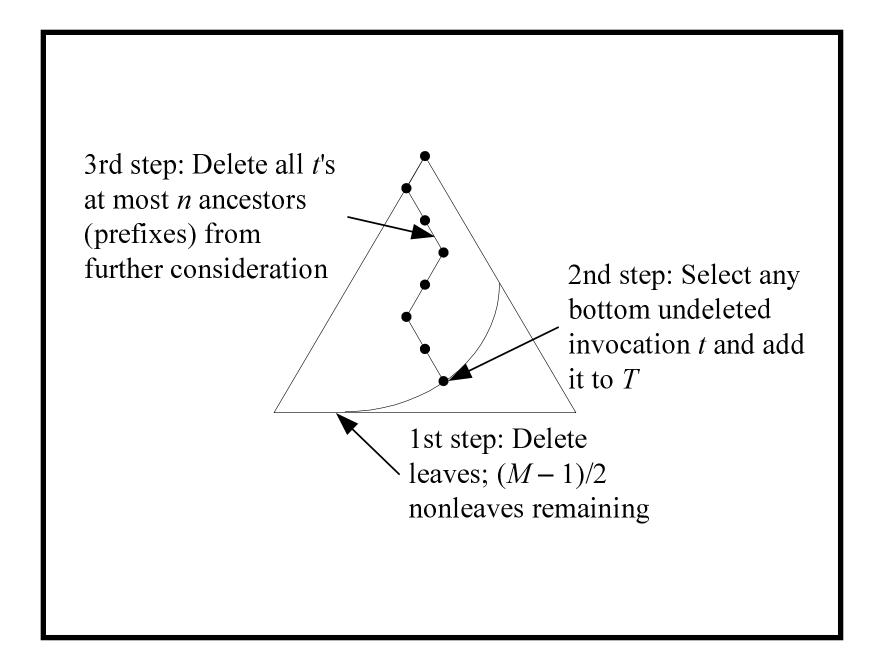
^aBerman (1978).

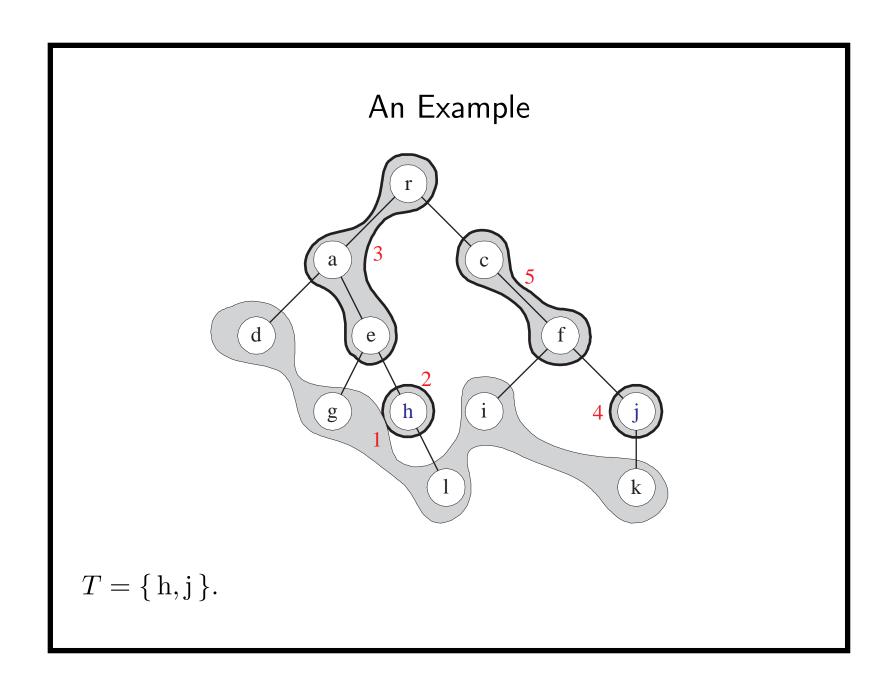
```
1: if |t| = n then
      return \phi[t];
 3: else
      if (R(\phi[t]), v) is in table H then
         return v;
      else
         if \phi[t0] = "satisfiable" or \phi[t1] = "satisfiable" then
           Insert (R(\phi[t]), \text{ "satisfiable"}) into H;
           return "satisfiable";
 9:
         else
10:
           Insert (R(\phi[t]), \text{"unsatisfiable"}) into H;
11:
           return "unsatisfiable";
12:
         end if
13:
      end if
14:
15: end if
```

- Since R is a reduction, $R(\phi[t]) = R(\phi[t'])$ implies that $\phi[t]$ and $\phi[t']$ must be both satisfiable or unsatisfiable.
- $R(\phi[t])$ has polynomial length $\leq p(n)$ because R runs in log space.
- As R maps to unary numbers, there are only polynomially many p(n) values of $R(\phi[t])$.
- How many nodes of the complete binary tree (of invocations/truth assignments) need to be visited?
- If that number is a polynomial, the overall algorithm runs in polynomial time and we are done.

- A search of the table takes time O(p(n)) in the random access memory model.
- The running time is O(Mp(n)), where M is the total number of invocations of the algorithm.
- The invocations of the algorithm form a binary tree of depth at most n.

- There is a set $T = \{t_1, t_2, ...\}$ of invocations (partial truth assignments, i.e.) such that:
 - 1. $|T| \ge (M-1)/(2n)$.
 - 2. All invocations in T are recursive (nonleaves).
 - 3. None of the elements of T is a prefix of another.





- All invocations $t \in T$ have different $R(\phi[t])$ values.
 - None of $h, j \in T$ is a prefix of the other.
 - The invocation of one started after the invocation of the other had terminated.
 - If they had the same value, the one that was invoked second would have looked it up, and therefore would not be recursive, a contradiction.
- The existence of T implies that there are at least (M-1)/(2n) different $R(\phi[t])$ values in the table.

The Proof (concluded)

- We already know that there are at most p(n) such values.
- Hence $(M-1)/(2n) \le p(n)$.
- Thus $M \leq 2np(n) + 1$.
- The running time is therefore $O(Mp(n)) = O(np^2(n))$.
- We comment that this theorem holds for any sparse language, not just unary ones.^a

^aMahaney (1980).

coNP-Completeness and Density

Theorem 82 (Fortung (1979)) If a unary language $U \subseteq \{0\}^*$ is coNP-complete, then P = NP.

- Suppose there is a reduction R from SAT COMPLEMENT to U.
- The rest of the proof is basically identical except that, now, we want to make sure a formula is unsatisfiable.

