Lengths of Boolean Formulas for the Threshold Function ${ }^{\text {a }}$

- Define the boolean function $T_{k}\left(x_{1}, \ldots, x_{n}\right)$ to be 1 if at least k of the x_{i} 's are 1 s , and 0 otherwise.
- Trivially, a formula of size $O\left(\binom{n}{k}\right)$ exists.
- Formula

$$
T_{3}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\bigvee_{1 \leq i<j<k \leq n}\left(x_{i} \wedge x_{j} \wedge x_{k}\right)
$$

has size $\binom{n}{3}=\Theta\left(n^{3}\right)$.

- Surprisingly, for any k, there exists a constant c_{k} such that $T_{k}\left(x_{1}, \ldots, x_{n}\right)$ has formula size at most $c_{k} n \log _{2} n$.
- The construction is again probabilistic, not constructive.

[^0]Lengths of Boolean Formulas for the Threshold Function (continued)

- We will verify the $k=3$ case below.
- Suppose we construct the formula of the form

$$
F=F_{1} \vee \cdots \vee F_{r}
$$

- Each F_{i} takes the form:

$$
F_{i}=\overbrace{(\bigvee \cdots) \wedge(\bigvee \cdots) \wedge(\bigvee \cdots)}^{3}
$$

- By the distribution law,

$$
\begin{aligned}
& \left(a_{1} \vee a_{2} \vee \cdots\right) \wedge\left(b_{1} \vee b_{2} \vee \cdots\right) \wedge\left(c_{1} \vee c_{2} \vee \cdots\right) \\
= & \left(a_{1} \wedge b_{1} \wedge c_{1}\right) \vee\left(a_{1} \wedge b_{1} \wedge c_{2}\right) \vee \cdots
\end{aligned}
$$

Lengths of Boolean Formulas for the Threshold Function (continued)

- Each x_{j} is placed into one of the pairs of parentheses at random.
- E.g., $F_{i}=\left(x_{1} \vee x_{3} \vee x_{5}\right) \wedge\left(x_{2} \vee x_{4}\right) \wedge\left(x_{6} \vee x_{7}\right)$.
- So F_{i} has exactly n variables.
- The process is repeated for each F_{i}.

Lengths of Boolean Formulas for the Threshold Function (continued)

- Clearly, all the monomials of F are of the form $x_{a} \wedge x_{b} \wedge x_{c}$ for distinct a, b, c.
- For example, F_{i} may look like

$$
\begin{aligned}
& \left(x_{1} \vee x_{3} \vee x_{5}\right) \wedge\left(x_{2} \vee x_{4}\right) \wedge\left(x_{6} \vee x_{7}\right) \\
= & \left(x_{1} \wedge x_{2} \wedge x_{6}\right) \vee\left(x_{1} \wedge x_{2} \wedge x_{7}\right) \\
& \vee \cdots \vee\left(x_{5} \wedge x_{4} \wedge x_{7}\right)
\end{aligned}
$$

- We know T_{3} has $\binom{n}{3}$ monomials.
- We shall show, if r is large enough, all $\binom{n}{3}$ monomials will appear with high probability.

Lengths of Boolean Formulas for the Threshold Function (continued)

- The probability that any given monomial $x_{a} \wedge x_{b} \wedge x_{c}$ appears in a given F_{i} is the probability that x_{a}, x_{b}, x_{c} are thrown into distinct pairs of parentheses.
- The probability is hence equal to $(2 / 3)(1 / 3)=2 / 9$.
- The probability that $x_{a} \wedge x_{b} \wedge x_{c}$ is not a monomial of F_{i} 's is $(7 / 9)^{r}$.
- Therefore, the probability that at least one of the $\binom{n}{3} \leq n^{3}$ monomials is missing from all the F_{i} 's is $\leq n^{3}(7 / 9)^{r}$.

Lengths of Boolean Formulas for the Threshold Function (concluded)

- This probability is less than one when $n^{3}(7 / 9)^{r}<1$.
- When this happens, F includes all $\binom{n}{3}$ monomials, and F has size $<r n$.
- In particular, with $r=-\log _{7 / 9} 2 n^{3}$, the probability that $F \neq T_{3}$ is at most $1 / 2$.
- In other words, the probability of that $F=T_{3}$ is at least $1 / 2$.
- Hence a formula of size $O(n \log n)$ exists.

Finding Short Formulas for the Threshold Function

- Our analysis implies an expected polynomial-time randomized algorithm to find such a formula (for T_{3}).
- Generate F randomly as described.
- In $O\left(\binom{n}{3}\right)=O\left(n^{3}\right)$ time, evaluate F with every n-bit truth assignment with three 1 's and check if $F=1$.
- In $O\left(\binom{n}{2}\right)=O\left(n^{2}\right)$ time, evaluate F with every n-bit truth assignment with two 1's and check if $F=0$.
- In $O(n)$ time, evaluate F with every n-bit truth assignment with one 1 and check if $F=0$.
- Check if $F=0$ with the all-0 truth assignment.

Finding Short Formulas for the Threshold Function (concluded)

- If F passes all the tests, return F.
- No need to check if $F=1$ when the truth assignment contains more than three 1's because F is monotone. ${ }^{\text {a }}$
- Otherwise, repeat the experiment.
- Clearly, the expected running time to find a valid formula is proportional to

$$
n^{3}+(1 / 2) n^{3}+(1 / 2)^{2} n^{3}+\cdots=O\left(n^{3}\right)
$$

${ }^{\text {a }}$ Thanks to a lively class discussion on December 8, 2009.

Cryptography

Whoever wishes to keep a secret must hide the fact that he possesses one. - Johann Wolfgang von Goethe (1749-1832)

Cryptography

- Alice (A) wants to send a message to Bob (B) over a channel monitored by Eve (eavesdropper).
- The protocol should be such that the message is known only to Alice and Bob.
- The art and science of keeping messages secure is cryptography.

$$
\text { Alice } \xrightarrow{\text { Eve }} \text { Bob }
$$

Encryption and Decryption

- Alice and Bob agree on two algorithms E and D-the encryption and the decryption algorithms.
- Both E and D are known to the public in the analysis.
- Alice runs E and wants to send a message x to Bob.
- Bob operates D.
- Privacy is assured in terms of two numbers e, d, the encryption and decryption keys.
- Alice sends $y=E(e, x)$ to Bob, who then performs $D(d, y)=x$ to recover x.
- x is called plaintext, and y is called ciphertext. ${ }^{\text {a }}$

[^1]
Some Requirements

- D should be an inverse of E given e and d.
- D and E must both run in (probabilistic) polynomial time.
- Eve should not be able to recover x from y without knowing d.
- As D is public, d must be kept secret.
- e may or may not be a secret.

Degrees of Security

- Perfect secrecy: After a ciphertext is intercepted by the enemy, the a posteriori probabilities of the plaintext that this ciphertext represents are identical to the a priori probabilities of the same plaintext before the interception.
- The probability that plaintext \mathcal{P} occurs is independent of the ciphertext \mathcal{C} being observed.
- So knowing \mathcal{C} yields no advantage in recovering \mathcal{P}.
- Such systems are said to be informationally secure.
- A system is computationally secure if breaking it is theoretically possible but computationally infeasible.

Conditions for Perfect Secrecy ${ }^{\text {a }}$

- Consider a cryptosystem where:
- The space of ciphertext is as large as that of keys.
- Every plaintext has a nonzero probability of being used.
- It is perfectly secure if and only if the following hold.
- A key is chosen with uniform distribution.
- For each plaintext x and ciphertext y, there exists a unique key e such that $E(e, x)=y$.

[^2]
The One-Time Pad ${ }^{\text {a }}$

1: Alice generates a random string r as long as x;
2: Alice sends r to Bob over a secret channel;
3: Alice sends $r \oplus x$ to Bob over a public channel;
4: Bob receives y;
5: Bob recovers $x:=y \oplus r$;

[^3]
Analysis

- The one-time pad uses $e=d=r$.
- This is said to be a private-key cryptosystem.
- Knowing x and knowing r are equivalent.
- Because r is random and private, the one-time pad achieves perfect secrecy (see also p. 567).
- The random bit string must be new for each round of communication.
- Cryptographically strong pseudorandom generators require exchanging only the seed once.
- The assumption of a private channel is problematic.

Public-Key Cryptography ${ }^{\text {a }}$

- Suppose only d is private to Bob, whereas e is public knowledge.
- Bob generates the (e, d) pair and publishes e.
- Anybody like Alice can send $E(e, x)$ to Bob.
- Knowing d, Bob can recover x by $D(d, E(e, x))=x$.
- The assumptions are complexity-theoretic.
- It is computationally difficult to compute d from e.
- It is computationally difficult to compute x from y without knowing d.

[^4]
Whitfield Diffie (1944-)

Martin Hellman (1945-)

Complexity Issues

- Given y and x, it is easy to verify whether $E(e, x)=y$.
- Hence one can always guess an x and verify.
- Cracking a public-key cryptosystem is thus in NP.
- A necessary condition for the existence of secure public-key cryptosystems is $\mathrm{P} \neq \mathrm{NP}$.
- But more is needed than $\mathrm{P} \neq \mathrm{NP}$.
- For instance, it is not sufficient that D is hard to compute in the worst case.
- It should be hard in "most" or "average" cases.

One-Way Functions

A function f is a one-way function if the following hold. ${ }^{\text {a }}$

1. f is one-to-one.
2. For all $x \in \Sigma^{*},|x|^{1 / k} \leq|f(x)| \leq|x|^{k}$ for some $k>0$.

- f is said to be honest.

3. f can be computed in polynomial time.
4. f^{-1} cannot be computed in polynomial time.

- Exhaustive search works, but it is too slow.
${ }^{\text {a Diffie }}$ and Hellman (1976); Boppana and Lagarias (1986); Grollmann and Selman (1988); Ko (1985); Ko, Long, and Du (1986); Watanabe (1985); Young (1983).

Existence of One-Way Functions

- Even if $\mathrm{P} \neq \mathrm{NP}$, there is no guarantee that one-way functions exist.
- No functions have been proved to be one-way.
- Is breaking glass a one-way function?

Candidates of One-Way Functions

- Modular exponentiation $f(x)=g^{x} \bmod p$, where g is a primitive root of p.
- Discrete logarithm is hard. ${ }^{a}$
- The RSA ${ }^{\text {b }}$ function $f(x)=x^{e} \bmod p q$ for an odd e relatively prime to $\phi(p q)$.
- Breaking the RSA function is hard.
${ }^{\text {a }}$ Conjectured to be $2^{n^{\epsilon}}$ for some $\epsilon>0$ in both the worst-case sense and average sense. It is in NP in some sense (Grollmann and Selman (1988)).
${ }^{\mathrm{b}}$ Rivest, Shamir, and Adleman (1978).

Candidates of One-Way Functions (concluded)

- Modular squaring $f(x)=x^{2} \bmod p q$.
- Determining if a number with a Jacobi symbol 1 is a quadratic residue is hard - the quadratic residuacity assumption (QRA). ${ }^{\text {a }}$

[^5]
The RSA Function

- Let p, q be two distinct primes.
- The RSA function is $x^{e} \bmod p q$ for an odd e relatively prime to $\phi(p q)$.
- By Lemma 51 (p. 404),

$$
\begin{equation*}
\phi(p q)=p q\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)=p q-p-q+1 \tag{8}
\end{equation*}
$$

- As $\operatorname{gcd}(e, \phi(p q))=1$, there is a d such that

$$
e d \equiv 1 \bmod \phi(p q),
$$

which can be found by the Euclidean algorithm.

Adi Shamir, Ron Rivest, and Leonard Adleman

Ron Rivest ${ }^{\text {a }}$ (1947-)

Adi Shamir ${ }^{\text {a }}$ (1952-)

${ }^{\text {a }}$ Turing Award (2002).

A Public-Key Cryptosystem Based on RSA

- Bob generates p and q.
- Bob publishes $p q$ and the encryption key e, a number relatively prime to $\phi(p q)$.
- The encryption function is $y=x^{e} \bmod p q$.
- Bob calculates $\phi(p q)$ by Eq. (8) (p. 578).
- Bob then calculates d such that $e d=1+k \phi(p q)$ for some $k \in \mathbb{Z}$.
- The decryption function is $y^{d} \bmod p q$.
- It works because $y^{d}=x^{e d}=x^{1+k \phi(p q)}=x \bmod p q$ by the Fermat-Euler theorem when $\operatorname{gcd}(x, p q)=1$ ($p .412$).

The "Security" of the RSA Function

- Factoring $p q$ or calculating d from ($e, p q$) seems hard.
- See also p. 408.
- Breaking the last bit of RSA is as hard as breaking the RSA. ${ }^{\text {a }}$
- Recommended RSA key sizes: ${ }^{\text {b }}$
- 1024 bits up to 2010.
- 2048 bits up to 2030.
- 3072 bits up to 2031 and beyond.

[^6]
The "Security" of the RSA Function (concluded)

- Recall that problem A is "harder than" problem B if solving A results in solving B.
- Factorization is "harder than" breaking the RSA.
- Calculating Euler's phi function is "harder than" breaking the RSA.
- Factorization is "harder than" calculating Euler's phi function (see Lemma 51 on p. 404).
- So factorization is harder than calculating Euler's phi function, which is harder than breaking the RSA.
- Factorization cannot be NP-hard unless NP = coNP. ${ }^{\text {a }}$
- So breaking the RSA is unlikely to imply $\mathrm{P}=\mathrm{NP}$.
${ }^{\text {a }}$ Brassard (1979).

The Secret-Key Agreement Problem

- Exchanging messages securely using a private-key cryptosystem requires Alice and Bob possessing the same key (p. 569).
- How can they agree on the same secret key when the channel is insecure?
- This is called the secret-key agreement problem.
- It was solved by Diffie and Hellman (1976) using one-way functions.

The Diffie-Hellman Secret-Key Agreement Protocol

1: Alice and Bob agree on a large prime p and a primitive root g of $p ;\{p$ and g are public. $\}$
2: Alice chooses a large number a at random;
3: Alice computes $\alpha=g^{a} \bmod p$;
4: Bob chooses a large number b at random;
5: Bob computes $\beta=g^{b} \bmod p$;
6: Alice sends α to Bob, and Bob sends β to Alice;
7: Alice computes her key $\beta^{a} \bmod p$;
8: Bob computes his key $\alpha^{b} \bmod p$;

Analysis

- The keys computed by Alice and Bob are identical:

$$
\beta^{a}=g^{b a}=g^{a b}=\alpha^{b} \bmod p .
$$

- To compute the common key from p, g, α, β is known as the Diffie-Hellman problem.
- It is conjectured to be hard.
- If discrete logarithm is easy, then one can solve the Diffie-Hellman problem.
- Because a and b can then be obtained by Eve.
- But the other direction is still open.

A Parallel History

- Diffie and Hellman's solution to the secret-key agreement problem led to public-key cryptography.
- At around the same time (or earlier) in Britain, the RSA public-key cryptosystem was invented first before the Diffie-Hellman secret-key agreement scheme was.
- Ellis, Cocks, and Williamson of the Communications Electronics Security Group of the British Government Communications Head Quarters (GCHQ).

Digital Signatures ${ }^{\text {a }}$

- Alice wants to send Bob a signed document x.
- The signature must unmistakably identifies the sender.
- Both Alice and Bob have public and private keys

$$
e_{\text {Alice }}, e_{\text {Bob }}, d_{\text {Alice }}, d_{\text {Bob }}
$$

- Assume the cryptosystem satisfies the commutative property

$$
\begin{equation*}
E(e, D(d, x))=D(d, E(e, x)) \tag{9}
\end{equation*}
$$

- As $\left(x^{d}\right)^{e}=\left(x^{e}\right)^{d}$, the RSA system satisfies it.
- Every cryptosystem guarantees $D(d, E(e, x))=x$.
${ }^{\text {a }}$ Diffie and Hellman (1976).

Digital Signatures Based on Public-Key Systems

- Alice signs x as

$$
\left(x, D\left(d_{\text {Alice }}, x\right)\right)
$$

- Bob receives (x, y) and verifies the signature by checking

$$
E\left(e_{\text {Alice }}, y\right)=E\left(e_{\text {Alice }}, D\left(d_{\text {Alice }}, x\right)\right)=x
$$

based on Eq. (9).

- The claim of authenticity is founded on the difficulty of inverting $E_{\text {Alice }}$ without knowing the key $d_{\text {Alice }}$.
- Warning: If Alice signs anything presented to her, she might inadvertently decrypt a ciphertext of hers.

Probabilistic Encryption ${ }^{\text {a }}$

- A deterministic cryptosystem can be broken if the plaintext has a distribution that favors the "easy" cases.
- The ability to forge signatures on even a vanishingly small fraction of strings of some length is a security weakness if those strings were the probable ones!
- A scheme may also "leak" partial information.
- Parity of the plaintext, e.g.
- The first solution to the problems of skewed distribution and partial information was based on the QRA.

[^7]

Silvio Micali (1954-)

The Setup

- Bob publishes $n=p q$, a product of two distinct primes, and a quadratic nonresidue y with Jacobi symbol 1.
- Bob keeps secret the factorization of n.
- Alice wants to send bit string $b_{1} b_{2} \cdots b_{k}$ to Bob.
- Alice encrypts the bits by choosing a random quadratic residue modulo n if b_{i} is 1 and a random quadratic nonresidue (with Jacobi symbol 1) otherwise.
- A sequence of residues and nonresidues are sent.
- Knowing the factorization of n, Bob can efficiently test quadratic residuacity and thus read the message.

A Useful Lemma

Lemma 75 Let $n=p q$ be a product of two distinct primes. Then a number $y \in Z_{n}^{*}$ is a quadratic residue modulo n if and only if $(y \mid p)=(y \mid q)=1$.

- The "only if" part:
- Let x be a solution to $x^{2}=y \bmod p q$.
- Then $x^{2}=y \bmod p$ and $x^{2}=y \bmod q$ also hold.
- Hence y is a quadratic modulo p and a quadratic residue modulo q.

The Proof (concluded)

- The "if" part:
- Let $a_{1}^{2}=y \bmod p$ and $a_{2}^{2}=y \bmod q$.
- Solve

$$
\begin{aligned}
x & =a_{1} \bmod p \\
x & =a_{2} \bmod q
\end{aligned}
$$

for x with the Chinese remainder theorem.

- As $x^{2}=y \bmod p, x^{2}=y \bmod q$, and $\operatorname{gcd}(p, q)=1$, we must have $x^{2}=y \bmod p q$.

The Jacobi Symbol and Quadratic Residuacity Test

- The Legendre symbol can be used as a test for quadratic residuacity by Lemma 63 (p. 482).
- Lemma 75 (p. 596) says this is not the case with the Jacobi symbol in general.
- Suppose $n=p q$ is a product of two distinct primes.
- A number $y \in Z_{n}^{*}$ with Jacobi symbol $(y \mid p q)=1$ may be a quadratic nonresidue modulo n when

$$
(y \mid p)=(y \mid q)=-1
$$

because $(y \mid p q)=(y \mid p)(y \mid q)$.

The Protocol for Alice

1: for $i=1,2, \ldots, k$ do
2: \quad Pick $r \in Z_{n}^{*}$ randomly;
3: if $b_{i}=1$ then
4: \quad Send $r^{2} \bmod n$; $\{$ Jacobi symbol is 1.$\}$
5: else
6: \quad Send $r^{2} y \bmod n ;\{$ Jacobi symbol is still 1.\}
7: end if
8: end for

The Protocol for Bob
1: for $i=1,2, \ldots, k$ do
2: Receive r;
3: \quad if $(r \mid p)=1$ and $(r \mid q)=1$ then
4: $\quad b_{i}:=1$;
5: else
6: $\quad b_{i}:=0 ;$
7: end if
8: end for

Semantic Security

- This encryption scheme is probabilistic.
- There are a large number of different encryptions of a given message.
- One is chosen at random by the sender to represent the message.
- This scheme is both polynomially secure and semantically secure.

What Is a Proof?

- A proof convinces a party of a certain claim.
-" $x^{n}+y^{n} \neq z^{n}$ for all $x, y, z \in \mathbb{Z}^{+}$and $n>2$."
- "Graph G is Hamiltonian."
- " $x^{p}=x \bmod p$ for prime p and $p \nmid x$."
- In mathematics, a proof is a fixed sequence of theorems.
- Think of it as a written examination.
- We will extend a proof to cover a proof process by which the validity of the assertion is established.
- Recall a job interview or an oral examination.

Prover and Verifier

- There are two parties to a proof.
- The prover (Peggy).
- The verifier (Victor).
- Given an assertion, the prover's goal is to convince the verifier of its validity (completeness).
- The verifier's objective is to accept only correct assertions (soundness).
- The verifier usually has an easier job than the prover.
- The setup is very much like the Turing test. ${ }^{\text {a }}$
${ }^{\text {a }}$ Turing (1950).

Interactive Proof Systems

- An interactive proof for a language L is a sequence of questions and answers between the two parties.
- At the end of the interaction, the verifier decides whether the claim is true or false.
- The verifier must be a probabilistic polynomial-time algorithm.
- The prover runs an exponential-time algorithm.
- If the prover is not more powerful than the verifier, no interaction is needed.

Interactive Proof Systems (concluded)

- The system decides L if the following two conditions hold for any common input x.
- If $x \in L$, then the probability that x is accepted by the verifier is at least $1-2^{-|x|}$.
- If $x \notin L$, then the probability that x is accepted by the verifier with any prover replacing the original prover is at most $2^{-|x|}$.
- Neither the number of rounds nor the lengths of the messages can be more than a polynomial of $|x|$.

IP ${ }^{\text {a }}$

- IP is the class of all languages decided by an interactive proof system.
- When $x \in L$, the completeness condition can be modified to require that the verifier accepts with certainty without affecting IP. ${ }^{\text {b }}$
- Similar things cannot be said of the soundness condition when $x \notin L$.
- Verifier's coin flips can be public. ${ }^{\text {c }}$
${ }^{\text {a }}$ Goldwasser, Micali, and Rackoff (1985).
${ }^{\mathrm{b}}$ Goldreich, Mansour, and Sipser (1987).
${ }^{\text {c }}$ Goldwasser and Sipser (1989).

The Relations of IP with Other Classes

- $\mathrm{NP} \subseteq \mathrm{IP}$.
- IP becomes NP when the verifier is deterministic.
- $\mathrm{BPP} \subseteq \mathrm{IP}$.
- IP becomes BPP when the verifier ignores the prover's messages.
- IP actually coincides with PSPACE. ${ }^{\text {a }}$
${ }^{\text {a }}$ Shamir (1990).

Graph Isomorphism

- $V_{1}=V_{2}=\{1,2, \ldots, n\}$.
- Graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there exists a permutation π on $\{1,2, \ldots, n\}$ so that $(u, v) \in E_{1} \Leftrightarrow(\pi(u), \pi(v)) \in E_{2}$.
- The task is to answer if $G_{1} \cong G_{2}$.
- No known polynomial-time algorithms.
- The problem is in NP (hence IP).
- It is not likely to be NP-complete. ${ }^{\text {a }}$
${ }^{\text {a }}$ Schöning (1987).

GRAPH NONISOMORPHISM

- $V_{1}=V_{2}=\{1,2, \ldots, n\}$.
- Graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are nonisomorphic if there exist no permutations π on $\{1,2, \ldots, n\}$ so that $(u, v) \in E_{1} \Leftrightarrow(\pi(u), \pi(v)) \in E_{2}$.
- The task is to answer if $G_{1} \not \not G_{2}$.
- Again, no known polynomial-time algorithms.
- It is in coNP, but how about NP or BPP?
- It is not likely to be coNP-complete.
- Surprisingly, GRAPH NONISOMORPHISM \in IP. ${ }^{\text {a }}$
${ }^{\text {a }}$ Goldreich, Micali, and Wigderson (1986).

A 2-Round Algorithm

1: Victor selects a random $i \in\{1,2\}$;
2: Victor selects a random permutation π on $\{1,2, \ldots, n\}$;
3: Victor applies π on graph G_{i} to obtain graph H;
4: Victor sends $\left(G_{1}, H\right)$ to Peggy;
5: if $G_{1} \cong H$ then
6: Peggy sends $j=1$ to Victor;
7: else
8: Peggy sends $j=2$ to Victor;
9: end if
10: if $j=i$ then
11: Victor accepts;
12: else
13: Victor rejects;
14: end if

Analysis

- Victor runs in probabilistic polynomial time.
- Suppose $G_{1} \not \approx G_{2}$.
- Peggy is able to tell which G_{i} is isomorphic to H.
- So Victor always accepts.
- Suppose $G_{1} \cong G_{2}$.
- No matter which i is picked by Victor, Peggy or any prover sees 2 identical graphs.
- Peggy or any prover with exponential power has only probability one half of guessing i correctly.
- So Victor erroneously accepts with probability $1 / 2$.
- Repeat the algorithm to obtain the desired probabilities.

[^0]: ${ }^{a}$ Nechiporuk (1964)?

[^1]: aBoth "zero" and "cipher" come from the same Arab word.

[^2]: ${ }^{a}$ Shannon (1949).

[^3]: ${ }^{\text {a }}$ Mauborgne and Vernam (1917); Shannon (1949). It was allegedly used for the hotline between Russia and U.S.

[^4]: ${ }^{\text {a }}$ Diffie and Hellman (1976).

[^5]: ${ }^{\text {a }}$ Due to Gauss.

[^6]: ${ }^{\text {a }}$ Alexi, Chor, Goldreich, and Schnorr (1988).
 ${ }^{\mathrm{b}}$ RSA (2003).

[^7]: ${ }^{\mathrm{a}}$ Goldwasser and Micali (1982).

