Problem 1. Let $a, b \in \mathbb{N}$ and p be a prime. Show that $(a + b)^p = a^p + b^p \mod p$.

Proof. By the binomial expansion,

$$
(a + b)^p = \sum_{r=0}^{p} \binom{p}{r} a^r b^{p-r}.
$$

(1)

As p is a prime, $r!(p - r)!$ is not a multiple of p for $0 < r < p$. But $\binom{p}{r} = p!/ (r! (p-r)!)$ is an integer and $p \mid p!$. Hence $\binom{p}{r}$ is a multiple of p for $0 < r < p$. Therefore, Eq. (1) gives $(a + b)^p = a^p + b^p \mod p$. \qed

Problem 2. The permanent of an $n \times n$ integer matrix A is defined as

$$
\text{perm}(A) = \sum_{\pi} \prod_{i=1}^{n} A_{i, \pi(i)}.
$$

Above, π ranges over all permutations of n elements. (It is similar to determinant but without the sign.) Show that if A is the adjacency matrix (hence a 0/1 matrix) of a bipartite graph G, then $\text{perm}(A)$ equals the number of perfect matchings of G.

Proof. Given a bipartite graph $G = (I, J, E)$ that satisfies

1. $I \cap J = \{\}$.
2. For all $(i, j) \in E$, $i \in I$ and $j \in J$.
3. $|I| = |J| = n^1$.

Its adjacency matrix A can be constructed as follows:

- A row of A is indexed by a vertex of I.
- A column of A is indexed by a vertex of J.
- For $A_{ij} \in A$,

$$
a_{ij} = \begin{cases}
0, & \text{iff } (i, j) \notin E, \\
1, & \text{iff } (i, j) \in E.
\end{cases}
$$

If there exists K perfect matching in G, then there also exists K corresponding permutation functions

$$
\pi_1 : I \rightarrow J, \quad \pi_2 : I \rightarrow J, \ldots, \quad \pi_K : I \rightarrow J
$$

\footnote{1}If not, its adjacency matrix won’t be a square one.

\footnote{2}Bijective, i.e., “1-1 and onto.”
such that \((i, \pi_k(i)) \in E\) for all \(i \in I\) and \(k \in K\). It also implies that

\[
\prod_{i=1}^{n} A_{i,\pi(i)} = \begin{cases}
1, & \pi \in \{\pi_1, \pi_2, \ldots, \pi_K\} \iff A_{1,\pi(1)} = A_{2,\pi(2)} = \cdots = A_{n,\pi(n)} = 1; \\
0, & \pi \not\in \{\pi_1, \pi_2, \ldots, \pi_K\}.
\end{cases}
\]

Thus, we have \(\sum_{\pi} \prod_{i=1}^{n} A_{i,\pi(i)} = K = \langle \# \text{ of perfect matchings in } G \rangle\). ☐