
Randomized Complexity Classes; RP

• Let N be a polynomial-time precise NTM that runs in
time p(n) and has 2 nondeterministic choices at each
step.

• N is a polynomial Monte Carlo Turing machine
for a language L if the following conditions hold:

– If x ∈ L, then at least half of the 2p(n) computation
paths of N on x halt with “yes” where n = |x |.

– If x 6∈ L, then all computation paths halt with “no.”

• The class of all languages with polynomial Monte Carlo
TMs is denoted RP (randomized polynomial time).a

aAdleman and Manders (1977).

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 512

Comments on RP

• Nondeterministic steps can be seen as fair coin flips.

• There are no false positive answers.

• The probability of false negatives, 1− ε, is at most 0.5.

• But any constant between 0 and 1 can replace 0.5.

– By repeating the algorithm k = d− 1
log2 1−εe times, the

probability of false negatives becomes (1− ε)k ≤ 0.5.

• In fact, ε can be arbitrarily close to 0 as long as it is of
the order 1/q(n) for some polynomial q(n).

– − 1
log2 1−ε = O(1

ε) = O(q(n)).

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 513

Where RP Fits

• P ⊆ RP ⊆ NP.

– A deterministic TM is like a Monte Carlo TM except
that all the coin flips are ignored.

– A Monte Carlo TM is an NTM with extra demands
on the number of accepting paths.

• compositeness ∈ RP; primes ∈ coRP; primes ∈ RP.a

– In fact, primes ∈ P.b

• RP ∪ coRP is an alternative “plausible” notion of
efficient computation.

aAdleman and Huang (1987).
bAgrawal, Kayal, and Saxena (2002).

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 514

ZPPa (Zero Probabilistic Polynomial)

• The class ZPP is defined as RP ∩ coRP.

• A language in ZPP has two Monte Carlo algorithms, one
with no false positives and the other with no false
negatives.

• If we repeatedly run both Monte Carlo algorithms,
eventually one definite answer will come (unlike RP).

– A positive answer from the one without false
positives.

– A negative answer from the one without false
negatives.

aGill (1977).

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 515

The ZPP Algorithm (Las Vegas)

1: {Suppose L ∈ ZPP.}
2: {N1 has no false positives, and N2 has no false

negatives.}
3: while true do
4: if N1(x) = “yes” then
5: return “yes”;
6: end if
7: if N2(x) = “no” then
8: return “no”;
9: end if

10: end while

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 516

ZPP (concluded)

• The expected running time for the correct answer to
emerge is polynomial.

– The probability that a run of the 2 algorithms does
not generate a definite answer is 0.5 (why?).

– Let p(n) be the running time of each run of the
while-loop.

– The expected running time for a definite answer is
∞∑

i=1

0.5iip(n) = 2p(n).

• Essentially, ZPP is the class of problems that can be
solved without errors in expected polynomial time.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 517

Large Deviations

• Suppose you have a biased coin.

• One side has probability 0.5 + ε to appear and the other
0.5− ε, for some 0 < ε < 0.5.

• But you do not know which is which.

• How to decide which side is the more likely side—with
high confidence?

• Answer: Flip the coin many times and pick the side that
appeared the most times.

• Question: Can you quantify the confidence?

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 518

The Chernoff Bounda

Theorem 69 (Chernoff (1952)) Suppose x1, x2, . . . , xn

are independent random variables taking the values 1 and 0
with probabilities p and 1− p, respectively. Let X =

∑n
i=1 xi.

Then for all 0 ≤ θ ≤ 1,

prob[X ≥ (1 + θ) pn] ≤ e−θ2pn/3.

• The probability that the deviate of a binomial
random variable from its expected value

E[X] = E[
n∑

i=1

xi] = pn

decreases exponentially with the deviation.
aHerman Chernoff (1923–). The Chernoff bound is asymptotically

optimal.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 519

The Proof

• Let t be any positive real number.

• Then

prob[X ≥ (1 + θ) pn] = prob[etX ≥ et(1+θ) pn].

• Markov’s inequality (p. 460) generalized to real-valued
random variables says that

prob
[
etX ≥ kE[etX]

] ≤ 1/k.

• With k = et(1+θ) pn/E[etX], we have

prob[X ≥ (1 + θ) pn] ≤ e−t(1+θ) pnE[etX].

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 520

The Proof (continued)

• Because X =
∑n

i=1 xi and xi’s are independent,

E[etX] = (E[etx1])n = [1 + p(et − 1)]n.

• Substituting, we obtain

prob[X ≥ (1 + θ) pn] ≤ e−t(1+θ) pn[1 + p(et − 1)]n

≤ e−t(1+θ) pnepn(et−1)

as (1 + a)n ≤ ean for all a > 0.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 521

The Proof (concluded)

• With the choice of t = ln(1 + θ), the above becomes

prob[X ≥ (1 + θ) pn] ≤ epn[θ−(1+θ) ln(1+θ)].

• The exponent expands to − θ2

2 + θ3

6 − θ4

12 + · · · for
0 ≤ θ ≤ 1, which is less than

−θ2

2
+

θ3

6
≤ θ2

(
−1

2
+

θ

6

)
≤ θ2

(
−1

2
+

1
6

)
= −θ2

3
.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 522

Power of the Majority Rule

From prob[X ≤ (1− θ) pn] ≤ e−
θ2
2 pn (prove it):

Corollary 70 If p = (1/2) + ε for some 0 ≤ ε ≤ 1/2, then

prob

[
n∑

i=1

xi ≤ n/2

]
≤ e−ε2n/2.

• The textbook’s corollary to Lemma 11.9 seems incorrect.

• Our original problem (p. 518) hence demands ≈ 1.4k/ε2

independent coin flips to guarantee making an error
with probability at most 2−k with the majority rule.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 523

BPPa (Bounded Probabilistic Polynomial)

• The class BPP contains all languages for which there is
a precise polynomial-time NTM N such that:

– If x ∈ L, then at least 3/4 of the computation paths
of N on x lead to “yes.”

– If x 6∈ L, then at least 3/4 of the computation paths
of N on x lead to “no.”

• N accepts or rejects by a clear majority.
aGill (1977).

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 524

Magic 3/4?

• The number 3/4 bounds the probability of a right
answer away from 1/2.

• Any constant strictly between 1/2 and 1 can be used
without affecting the class BPP.

• In fact, 0.5 plus any inverse polynomial between 1/2 and
1,

0.5 +
1

p(n)
,

can be used.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 525

The Majority Vote Algorithm

Suppose L is decided by N by majority (1/2) + ε.

1: for i = 1, 2, . . . , 2k + 1 do
2: Run N on input x;
3: end for
4: if “yes” is the majority answer then
5: “yes”;
6: else
7: “no”;
8: end if

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 526

Analysis

• The running time remains polynomial, being 2k + 1
times N ’s running time.

• By Corollary 70 (p. 523), the probability of a false
answer is at most e−ε2k.

• By taking k = d 2/ε2 e, the error probability is at most
1/4.

• As with the RP case, ε can be any inverse polynomial,
because k remains polynomial in n.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 527

Probability Amplification for BPP

• Let m be the number of random bits used by a BPP
algorithm.

– By definition, m is polynomial in n.

• With k = Θ(log m) in the majority vote algorithm, we
can lower the error probability to, say,

≤ (3m)−1.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 528

Aspects of BPP

• BPP is the most comprehensive yet plausible notion of
efficient computation.

– If a problem is in BPP, we take it to mean that the
problem can be solved efficiently.

– In this aspect, BPP has effectively replaced P.

• (RP ∪ coRP) ⊆ (NP ∪ coNP).

• (RP ∪ coRP) ⊆ BPP.

• Whether BPP ⊆ (NP ∪ coNP) is unknown.

• But it is unlikely that NP ⊆ BPP (p. 544).

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 529

coBPP

• The definition of BPP is symmetric: acceptance by clear
majority and rejection by clear majority.

• An algorithm for L ∈ BPP becomes one for L̄ by
reversing the answer.

• So L̄ ∈ BPP and BPP ⊆ coBPP.

• Similarly coBPP ⊆ BPP.

• Hence BPP = coBPP.

• This approach does not work for RP.

• It did not work for NP either.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 530

BPP and coBPP

Ø\HVÙ ØQRÙ ØQRÙ Ø\HVÙ

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 531

“The Good, the Bad, and the Ugly”

BPPP

ZPP

RPcoRP

NPcoNP

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 532

Circuit Complexity

• Circuit complexity is based on boolean circuits instead
of Turing machines.

• A boolean circuit with n inputs computes a boolean
function of n variables.

• By identifying true/1 with “yes” and false/0 with
“no,” a boolean circuit with n inputs accepts certain
strings in { 0, 1 }n.

• To relate circuits with arbitrary languages, we need one
circuit for each possible input length n.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 533

Formal Definitions

• The size of a circuit is the number of gates in it.

• A family of circuits is an infinite sequence
C = (C0, C1, . . .) of boolean circuits, where Cn has n

boolean inputs.

• For input x ∈ {0, 1}∗, C| x | outputs 1 if and only if
x ∈ L.

– Cn accepts L ∩ {0, 1}n.

• L ⊆ {0, 1}∗ has polynomial circuits if there is a family
of circuits C such that:

– The size of Cn is at most p(n) for some fixed
polynomial p.

– Cn accepts L ∩ {0, 1}n.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 534

Exponential Circuits Contain All Languages

• Theorem 14 (p. 171) implies that there are languages
that cannot be solved by circuits of size 2n/(2n).

• But exponential circuits can solve all problems.

Proposition 71 All decision problems (decidable or
otherwise) can be solved by a circuit of size 2n+2.

• We will show that for any language L ⊆ {0, 1}∗,
L ∩ {0, 1}n can be decided by a circuit of size 2n+2.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 535

The Proof (concluded)

• Define boolean function f : {0, 1}n → {0, 1}, where

f(x1x2 · · ·xn) =

1 x1x2 · · ·xn ∈ L,

0 x1x2 · · ·xn 6∈ L.

• f(x1x2 · · ·xn) = (x1 ∧ f(1x2 · · ·xn)) ∨ (¬x1 ∧ f(0x2 · · ·xn)).

• The circuit size s(n) for f(x1x2 · · ·xn) hence satisfies

s(n) = 4 + 2s(n− 1)

with s(1) = 1.

• Solve it to obtain s(n) = 5× 2n−1 − 4 ≤ 2n+2.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 536

The Circuit Complexity of P

Proposition 72 All languages in P have polynomial
circuits.

• Let L ∈ P be decided by a TM in time p(n).

• By Corollary 31 (p. 261), there is a circuit with
O(p(n)2) gates that accepts L ∩ {0, 1}n.

• The size of the circuit depends only on L and the length
of the input.

• The size of the circuit is polynomial in n.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 537

Polynomial Circuits vs. P

• Is the converse of Proposition 72 true?

– Do polynomial circuits accept only languages in P?

• They can accept undecidable languages!

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 538

Languages That Polynomial Circuits Accept
(concluded)

• Let L ⊆ {0, 1}∗ be an undecidable language.

• Let U = {1n : the binary expansion of n is in L}.a
– For example, 111111 ∈ U if 1012 ∈ L.

• U is also undecidable.

• U ∩ {1}n can be accepted by the trivial circuit Cn that
outputs 1 if 1n ∈ U and outputs 0 if 1n 6∈ U .

– We may not know which is the case for general n.

• The family of circuits (C0, C1, . . .) is polynomial in size.
aAssume n’s leading bit is always 1 without loss of generality.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 539

A Patch

• Despite the simplicity of a circuit, the previous
discussions imply the following:

– Circuits are not a realistic model of computation.

– Polynomial circuits are not a plausible notion of
efficient computation.

• What is missing?

• The effective and efficient constructibility of

C0, C1,

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 540

Uniformity

• A family (C0, C1, . . .) of circuits is uniform if there is a
log n-space bounded TM which on input 1n outputs Cn.

– Note that n is the length of the input to Cn.

– Circuits now cannot accept undecidable languages
(why?).

– The circuit family on p. 539 is not constructible by a
single Turing machine (algorithm).

• A language has uniformly polynomial circuits if
there is a uniform family of polynomial circuits that
decide it.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 541

Uniformly Polynomial Circuits and P

Theorem 73 L ∈ P if and only if L has uniformly
polynomial circuits.

• One direction was proved in Proposition 72 (p. 537).

• Now suppose L has uniformly polynomial circuits.

• Decide x ∈ L in polynomial time as follows:

– Calculate n = |x |.
– Generate Cn in log n space, hence polynomial time.

– Evaluate the circuit with input x in polynomial time.

• Therefore L ∈ P.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 542

Relation to P vs. NP

• Theorem 73 implies that P 6= NP if and only if
NP-complete problems have no uniformly polynomial
circuits.

• A stronger conjecture: NP-complete problems have no
polynomial circuits, uniformly or not.

• The above is currently the preferred approach to proving
the P 6= NP conjecture—without success so far.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 543

BPP’s Circuit Complexity

Theorem 74 (Adleman (1978)) All languages in BPP
have polynomial circuits.

• Our proof will be nonconstructive in that only the
existence of the desired circuits is shown.

– Recall our proof of Theorem 14 (p. 171).

– Something exists if its probability of existence is
nonzero.

• It is not known how to efficiently generate circuit Cn.

• If the construction of Cn can be made efficient, then
P = BPP, an unlikely result.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 544

The Proof

• Let L ∈ BPP be decided by a precise NTM N by clear
majority.

• We shall prove that L has polynomial circuits C0, C1,

• Suppose N runs in time p(n), where p(n) is a
polynomial.

• Let An = {a1, a2, . . . , am}, where ai ∈ {0, 1}p(n).

• Pick m = 12(n + 1).

• Each ai ∈ An represents a sequence of nondeterministic
choices (i.e., a computation path) for N .

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 545

The Proof (continued)

• Let x be an input with |x | = n.

• Circuit Cn simulates N on x with each sequence of
choices in An and then takes the majority of the m

outcomes.a

• Because N with ai is a polynomial-time TM, it can be
simulated by polynomial circuits of size O(p(n)2).

– See the proof of Proposition 72 (p. 537).

• The size of Cn is therefore O(mp(n)2) = O(np(n)2).

– This is a polynomial.
aAs m is even, there may be no clear majority. Still, the probability

of that happening is very small and does not materially affect our general

conclusion. Thanks to a lively class discussion on December 14, 2010.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 546

The Circuit

DP
D�

D� D�

0DMRULW\�ORJLF

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 547

The Proof (continued)

• We now prove the existence of an An making Cn correct
on all n-bit inputs.

• Call ai bad if it leads N to a false positive or a false
negative.

• Select An uniformly randomly.

• For each x ∈ {0, 1}n, 1/4 of the computations of N are
erroneous.

• Because the sequences in An are chosen randomly and
independently, the expected number of bad ai’s is m/4.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 548

The Proof (continued)

• By the Chernoff bound (p. 519), the probability that the
number of bad ai’s is m/2 or more is at most

e−m/12 < 2−(n+1).

• The error probability is < 2−(n+1) for each x ∈ {0, 1}n.

• The probability that there is an x such that An results
in an incorrect answer is < 2n2−(n+1) = 2−1.

– prob[A ∪B ∪ · · ·] ≤ prob[A] + prob[B] + · · · .
• Note that each An yields a circuit.

• We just showed that at least half of them are correct.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 549

The Proof (concluded)

• So with probability ≥ 0.5, a random An produces a
correct Cn for all inputs of length n.

• Because this probability exceeds 0, an An that makes
majority vote work for all inputs of length n exists.

• Hence a correct Cn exists.a

• We have used the probabilistic method.
aQuine (1948), “To be is to be the value of a bound variable.”

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 550

