Perfect Matching for General Graphs

- Page 438 is about bipartite perfect matching
- Now we are given a graph G = (V, E).

$$- V = \{v_1, v_2, \dots, v_{2n}\}.$$

- We are asked if there is a perfect matching.
 - A permutation π of $\{1, 2, \ldots, 2n\}$ such that

$$(v_i, v_{\pi(i)}) \in E$$

for all $v_i \in V$.

The Tutte Matrix^a

• Given a graph G = (V, E), construct the $2n \times 2n$ **Tutte** matrix T^G such that

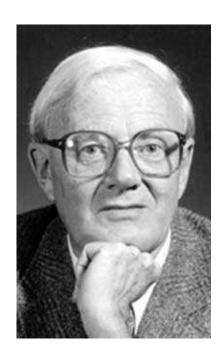
$$T_{ij}^{G} = \begin{cases} x_{ij} & \text{if } (v_i, v_j) \in E \text{ and } i < j, \\ -x_{ij} & \text{if } (v_i, v_j) \in E \text{ and } i > j, \\ 0 & \text{othersie.} \end{cases}$$

- The Tutte matrix is a skew-symmetric symbolic matrix.
- Similar to Proposition 58 (p. 442):

Proposition 60 G has a perfect matching if and only if $det(T^G)$ is not identically zero.

^aWilliam Thomas Tutte (1917–2002).

William Thomas Tutte (1917–2002)



Monte Carlo Algorithms^a

- The randomized bipartite perfect matching algorithm is called a **Monte Carlo algorithm** in the sense that
 - If the algorithm finds that a matching exists, it is always correct (no **false positives**).
 - If the algorithm answers in the negative, then it may make an error (false negatives).

^aMetropolis and Ulam (1949).

Monte Carlo Algorithms (concluded)

- The algorithm makes a false negative with probability ≤ 0.5 .^a
 - Note this probability refers to

prob[algorithm answers "no" |G| has a perfect matching] not

 $\operatorname{prob}[G \text{ has a perfect matching } | \operatorname{algorithm answers "no"}].$

- This probability is *not* over the space of all graphs or determinants, but *over* the algorithm's own coin flips.
 - It holds for any bipartite graph.

^aEquivalently, among the coin flips, at most half of them lead to the wrong answer.

The Markov Inequality^a

Lemma 61 Let x be a random variable taking nonnegative integer values. Then for any k > 0,

$$\operatorname{prob}[x \ge kE[x]] \le 1/k.$$

• Let p_i denote the probability that x = i.

$$E[x] = \sum_{i} ip_{i}$$

$$= \sum_{i < kE[x]} ip_{i} + \sum_{i \ge kE[x]} ip_{i}$$

$$\geq kE[x] \times \operatorname{prob}[x \ge kE[x]].$$

^aAndrei Andreyevich Markov (1856–1922).

Andrei Andreyevich Markov (1856–1922)

An Application of Markov's Inequality

- Algorithm C runs in expected time T(n) and always gives the right answer.
- Consider an algorithm that runs C for time kT(n) and rejects the input if C does not stop within the time bound.
- By Markov's inequality, this new algorithm runs in time kT(n) and gives the wrong answer with probability $\leq 1/k$.
- By running this algorithm m times, we reduce the error probability to $\leq k^{-m}$.

^aWith the same input. Thanks to a question on December 7, 2010.

An Application of Markov's Inequality (concluded)

- Suppose, instead, we run the algorithm for the same running time mkT(n) once and rejects the input if it does not stop within the time bound.
- By Markov's inequality, this new algorithm gives the wrong answer with probability $\leq 1/(mk)$.
- This is much worse than the previous algorithm's error probability of $\leq k^{-m}$.

FSAT for k-SAT Formulas (p. 425)

- Let $\phi(x_1, x_2, \dots, x_n)$ be a k-sat formula.
- If ϕ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next propose a randomized algorithm for this problem.

A Random Walk Algorithm for ϕ in CNF Form

```
1: Start with an arbitrary truth assignment T;
 2: for i = 1, 2, \dots, r do
      if T \models \phi then
        return "\phi is satisfiable with T";
4:
      else
 5:
        Let c be an unsatisfied clause in \phi under T; {All of
        its literals are false under T.
        Pick any x of these literals at random;
 7:
        Modify T to make x true;
      end if
9:
10: end for
11: return "\phi is unsatisfiable";
```

3SAT vs. 2SAT Again

- Note that if ϕ is unsatisfiable, the algorithm will not refute it.
- The random walk algorithm needs expected exponential time for 3sat.
 - In fact, it runs in expected $O((1.333\cdots + \epsilon)^n)$ time with r = 3n, a much better than $O(2^n)$.
- We will show immediately that it works well for 2sat.
- The state of the art as of 2006 is expected $O(1.322^n)$ time for 3sat and expected $O(1.474^n)$ time for 4sat.

^aUse this setting per run of the algorithm.

^bSchöning (1999).

^cKwama and Tamaki (2004); Rolf (2006).

Random Walk Works for 2SATa

Theorem 62 Suppose the random walk algorithm with $r = 2n^2$ is applied to any satisfiable 2SAT problem with n variables. Then a satisfying truth assignment will be discovered with probability at least 0.5.

- Let \hat{T} be a truth assignment such that $\hat{T} \models \phi$.
- Assume our starting T differs from \hat{T} in i values.
 - Their Hamming distance is i.
 - Recall T is arbitrary.
- Let t(i) denote the expected number of repetitions of the flipping step until a satisfying truth assignment is found.

^aPapadimitriou (1991).

The Proof

- It can be shown that t(i) is finite.
- t(0) = 0 because it means that $T = \hat{T}$ and hence $T \models \phi$.
- If $T \neq \hat{T}$ or T is not equal to any other satisfying truth assignment, then we need to flip at least once.
- We flip a coin to pick among the 2 literals of a clause not satisfied by the present T.
- At least one of the 2 literals is true under \hat{T} because \hat{T} satisfies all clauses.
- So we have at least 0.5 chance of moving closer to \hat{T} .

• Thus

$$t(i) \le \frac{t(i-1) + t(i+1)}{2} + 1$$

for 0 < i < n.

- Inequality is used because, for example, T may differ from \hat{T} in both literals.
- It must also hold that

$$t(n) \le t(n-1) + 1$$

because at i = n, we can only decrease i.

• As we are only interested in upper bounds, we solve

$$x(0) = 0$$

 $x(n) = x(n-1) + 1$
 $x(i) = \frac{x(i-1) + x(i+1)}{2} + 1, \quad 0 < i < n$

• This is one-dimensional random walk with a reflecting and an absorbing barrier.

• Add the equations up to obtain

$$= \frac{x(1) + x(2) + \dots + x(n)}{\frac{x(0) + x(1) + 2x(2) + \dots + 2x(n-2) + x(n-1) + x(n)}{2}}{+n + x(n-1)}$$

• Simplify to yield

$$\frac{x(1) + x(n) - x(n-1)}{2} = n.$$

• As x(n) - x(n-1) = 1, we have

$$x(1) = 2n - 1.$$

• Iteratively, we obtain

$$x(2) = 4n - 4,$$

$$\vdots$$

$$x(i) = 2in - i^{2}.$$

• The worst case happens when i = n, in which case

$$x(n) = n^2$$
.

The Proof (concluded)

• We therefore reach the conclusion that

$$t(i) \le x(i) \le x(n) = n^2.$$

- So the expected number of steps is at most n^2 .
- The algorithm picks a running time $2n^2$.
- This amounts to invoking the Markov inequality (p. 460) with k = 2, with the consequence of having a probability of 0.5.
- The proof does not yield a polynomial bound for 3sat.^a

^aContributed by Mr. Cheng-Yu Lee (R95922035) on November 8, 2006.

Boosting the Performance

• We can pick $r = 2mn^2$ to have an error probability of

$$\leq \frac{1}{2m}$$

by Markov's inequality.

- Alternatively, with the same running time, we can run the " $r = 2n^2$ " algorithm m times.
- The error probability is now reduced to

$$\leq 2^{-m}$$
.

Primality Tests

- \bullet PRIMES asks if a number N is a prime.
- The classic algorithm tests if $k \mid N$ for $k = 2, 3, ..., \sqrt{N}$.
- But it runs in $\Omega(2^{n/2})$ steps, where $n = \log_2 N$.

The Density Attack for PRIMES

```
1: Pick k \in \{2, ..., N-1\} randomly; {Assume N > 2.}
```

2: **if** $k \mid N$ **then**

3: **return** "N is composite";

4: **else**

5: **return** "N is a prime";

6: end if

Analysis^a

- Suppose N = PQ, a product of 2 primes.
- The probability of success is

$$<1-\frac{\phi(N)}{N}=1-\frac{(P-1)(Q-1)}{PQ}=\frac{P+Q-1}{PQ}.$$

• In the case where $P \approx Q$, this probability becomes

$$<\frac{1}{P}+\frac{1}{Q}pprox \frac{2}{\sqrt{N}}.$$

• This probability is exponentially small.

^aSee also p. 407.

The Fermat Test for Primality

Fermat's "little" theorem on p. 409 suggests the following primality test for any given number p:

- 1: Pick a number a randomly from $\{1, 2, \dots, N-1\}$;
- 2: if $a^{N-1} \neq 1 \mod N$ then
- 3: **return** "N is composite";
- 4: else
- 5: \mathbf{return} "N is a prime";
- 6: end if

The Fermat Test for Primality (concluded)

- Unfortunately, there are composite numbers called **Carmichael numbers** that will pass the Fermat test for all $a \in \{1, 2, ..., N-1\}$.^a
 - The Fermat test will return "N is a prime" for all Carmichael numbers N.
- There are infinitely many Carmichael numbers.^b
- In fact, the number of Carmichael numbers less than n exceeds $n^{2/7}$ for n large enough.

^aCarmichael (1910).

^bAlford, Granville, and Pomerance (1992).

Square Roots Modulo a Prime

- Equation $x^2 = a \mod p$ has at most two (distinct) roots by Lemma 56 (p. 414).
 - The roots are called **square roots**.
 - Numbers a with square roots $and \gcd(a, p) = 1$ are called **quadratic residues**.
 - * They are

$$1^2 \mod p, 2^2 \mod p, \dots, (p-1)^2 \mod p.$$

• We shall show that a number either has two roots or has none, and testing which one is true is trivial.^a

 $^{{}^{\}mathrm{a}}$ No efficient deterministic root-finding algorithms are known yet.

Euler's Test

Lemma 63 (Euler) Let p be an odd prime and $a \neq 0 \mod p$.

- 1. If $a^{(p-1)/2} = 1 \mod p$, then $x^2 = a \mod p$ has two roots.
- 2. If $a^{(p-1)/2} \neq 1 \mod p$, then $a^{(p-1)/2} = -1 \mod p$ and $x^2 = a \mod p$ has no roots.

- Let r be a primitive root of p.
- By Fermat's "little" theorem, $r^{(p-1)/2}$ is a square root of 1, so $r^{(p-1)/2} = 1 \mod p$ or $r^{(p-1)/2} = -1 \mod p$.
- But as r is a primitive root, $r^{(p-1)/2} \neq 1 \mod p$.
- Hence

$$r^{(p-1)/2} = -1 \mod p$$
.

- Let $a = r^k \mod p$ for some k.
- Then

$$1 = a^{(p-1)/2} = r^{k(p-1)/2} = \left[r^{(p-1)/2} \right]^k = (-1)^k \mod p.$$

- So k must be even.
- Suppose $a = r^{2j}$ for some $1 \le j \le (p-1)/2$.
- Then $a^{(p-1)/2} = r^{j(p-1)} = 1 \mod p$, and a's two distinct roots are $r^j, -r^j (= r^{j+(p-1)/2} \mod p)$.
 - If $r^j = -r^j \mod p$, then $2r^j = 0 \mod p$, which implies $r^j = 0 \mod p$, a contradiction.

- As $1 \le j \le (p-1)/2$, there are (p-1)/2 such a's.
- Each such a has 2 distinct square roots.
- The square roots of all the a's are distinct.
 - The square roots of different a's must be different.
- Hence the set of square roots is $\{1, 2, \dots, p-1\}$.
 - Because there are (p-1)/2 such a's and each a has two distinct square roots.
- As a result, $a = r^{2j}$, $1 \le j \le (p-1)/2$, exhaust all the quadratic residues.

The Proof (concluded)

- If $a = r^{2j+1}$, then it has no roots because all the square roots have been taken.
- Now,

$$a^{(p-1)/2} = \left[r^{(p-1)/2} \right]^{2j+1} = (-1)^{2j+1} = -1 \mod p.$$

The Legendre Symbol^a and Quadratic Residuacity Test

- By Lemma 63 (p. 481) $a^{(p-1)/2} \mod p = \pm 1$ for $a \neq 0 \mod p$.
- For odd prime p, define the **Legendre symbol** $(a \mid p)$ as

$$(a \mid p) = \begin{cases} 0 & \text{if } p \mid a, \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p, \\ -1 & \text{if } a \text{ is a quadratic nonresidue modulo } p. \end{cases}$$

- Euler's test implies $a^{(p-1)/2} = (a \mid p) \mod p$ for any odd prime p and any integer a.
- Note that (ab|p) = (a|p)(b|p).

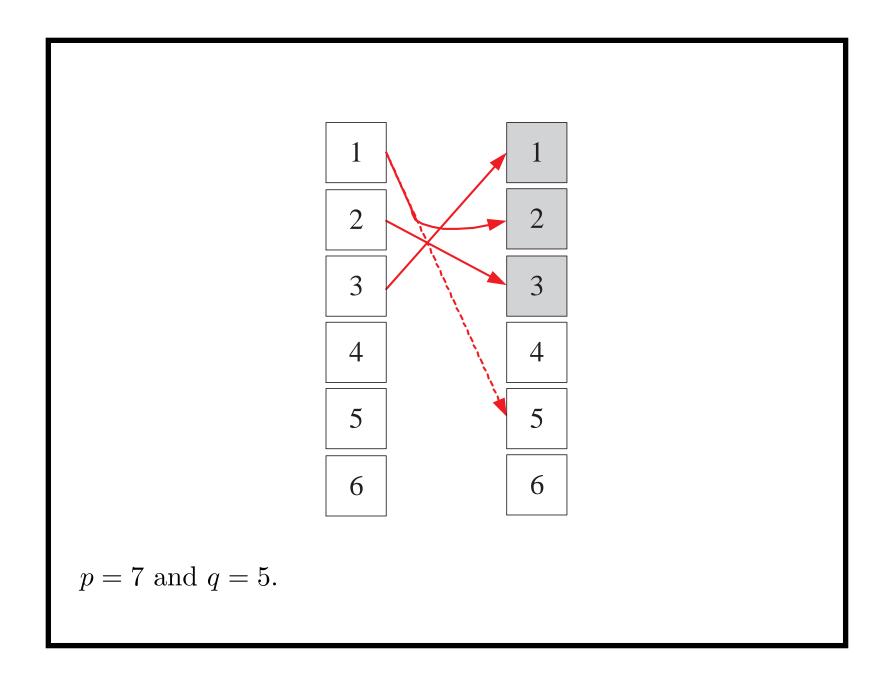
^aAndrien-Marie Legendre (1752–1833).

Gauss's Lemma

Lemma 64 (Gauss) Let p and q be two odd primes. Then $(q|p) = (-1)^m$, where m is the number of residues in $R = \{iq \bmod p : 1 \le i \le (p-1)/2\}$ that are greater than (p-1)/2.

- All residues in R are distinct.
 - If $iq = jq \mod p$, then p|(j-i)q or p|q.
- No two elements of R add up to p.
 - If $iq + jq = 0 \mod p$, then p|(i+j) or p|q.
 - But neither is possible.

- Consider the set R' of residues that result from R if we replace each of the m elements $a \in R$ such that a > (p-1)/2 by p-a.
 - This is equivalent to performing $-a \mod p$.
- All residues in R' are now at most (p-1)/2.
- In fact, $R' = \{1, 2, \dots, (p-1)/2\}$ (see illustration next page).
 - Otherwise, two elements of R would add up to p, which has been shown to be impossible.



The Proof (concluded)

- Alternatively, $R' = \{\pm iq \mod p : 1 \le i \le (p-1)/2\}$, where exactly m of the elements have the minus sign.
- Take the product of all elements in the two representations of R'.
- So

$$[(p-1)/2]! = (-1)^m q^{(p-1)/2} [(p-1)/2]! \mod p.$$

• Because gcd([(p-1)/2]!, p) = 1, the above implies

$$1 = (-1)^m q^{(p-1)/2} \bmod p.$$

Legendre's Law of Quadratic Reciprocity^a

- Let p and q be two odd primes.
- The next result says their Legendre symbols are distinct if and only if both numbers are 3 mod 4.

Lemma 65 (Legendre (1785), Gauss)

$$(p|q)(q|p) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}.$$

^aFirst stated by Euler in 1751. Legendre (1785) did not give a correct proof. Gauss proved the theorem when he was 19. He gave at least 6 different proofs during his life. The 152nd proof appeared in 1963.

- Sum the elements of R' in the previous proof in mod 2.
- On one hand, this is just $\sum_{i=1}^{(p-1)/2} i \mod 2$.
- On the other hand, the sum equals

$$\sum_{i=1}^{(p-1)/2} \left(qi - p \left\lfloor \frac{qi}{p} \right\rfloor \right) + mp \mod 2$$

$$= \left(q \sum_{i=1}^{(p-1)/2} i - p \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{qi}{p} \right\rfloor \right) + mp \mod 2.$$

- Signs are irrelevant under mod 2.
- -m is as in Lemma 64 (p. 487).

• Ignore odd multipliers to make the sum equal

$$\left(\sum_{i=1}^{(p-1)/2} i - \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{qi}{p} \right\rfloor \right) + m \mod 2.$$

• Equate the above with $\sum_{i=1}^{(p-1)/2} i \mod 2$ to obtain

$$m = \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{qi}{p} \right\rfloor \mod 2.$$

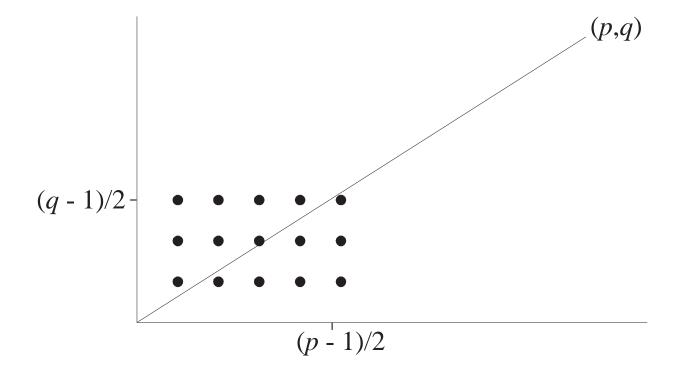
The Proof (concluded)

• $\sum_{i=1}^{(p-1)/2} \lfloor \frac{qi}{p} \rfloor$ is the number of integral points under the line

$$y = (q/p) x$$

for $1 \le x \le (p-1)/2$.

- Gauss's lemma (p. 487) says $(q|p) = (-1)^m$.
- Repeat the proof with p and q reversed.
- So $(p|q) = (-1)^{m'}$, where m' is the number of integral points above the line y = (q/p)x for $1 \le y \le (q-1)/2$.
- As a result, $(p|q)(q|p) = (-1)^{m+m'}$.
- But m + m' is the total number of integral points in the $\frac{p-1}{2} \times \frac{q-1}{2}$ rectangle, which is $\frac{p-1}{2} \cdot \frac{q-1}{2}$.



p = 11 and q = 7.

The Jacobi Symbol^a

- The Legendre symbol only works for odd *prime* moduli.
- The **Jacobi symbol** $(a \mid m)$ extends it to cases where m is not prime.
- Let $m = p_1 p_2 \cdots p_k$ be the prime factorization of m.
- When m > 1 is odd and gcd(a, m) = 1, then

$$(a|m) = \prod_{i=1}^{k} (a | p_i).$$

- Note that the Jacobi symbol equals ± 1 .
- It reduces to the Legendre symbol when m is a prime.
- Define (a | 1) = 1.

^aCarl Jacobi (1804–1851).

Properties of the Jacobi Symbol

The Jacobi symbol has the following properties, for arguments for which it is defined.

1.
$$(ab | m) = (a | m)(b | m)$$
.

2.
$$(a \mid m_1 m_2) = (a \mid m_1)(a \mid m_2)$$
.

3. If
$$a = b \mod m$$
, then $(a | m) = (b | m)$.

4.
$$(-1 \mid m) = (-1)^{(m-1)/2}$$
 (by Lemma 64 on p. 487).

5.
$$(2 \mid m) = (-1)^{(m^2-1)/8}$$
.a

6. If a and m are both odd, then $(a \mid m)(m \mid a) = (-1)^{(a-1)(m-1)/4}$.

^aBy Lemma 64 (p. 487) and some parity arguments.

Calculation of (2200|999)

Similar to the Euclidean algorithm and does *not* require factorization.

$$(202|999) = (-1)^{(999^2 - 1)/8}(101|999)$$

$$= (-1)^{124750}(101|999) = (101|999)$$

$$= (-1)^{(100)(998)/4}(999|101) = (-1)^{24950}(999|101)$$

$$= (999|101) = (90|101) = (-1)^{(101^2 - 1)/8}(45|101)$$

$$= (-1)^{1275}(45|101) = -(45|101)$$

$$= -(-1)^{(44)(100)/4}(101|45) = -(101|45) = -(11|45)$$

$$= -(-1)^{(10)(44)/4}(45|11) = -(45|11)$$

$$= -(1|11) = -1.$$

A Result Generalizing Proposition 10.3 in the Textbook

Theorem 66 The group of set $\Phi(n)$ under multiplication $\mod n$ has a primitive root if and only if n is either 1, 2, 4, p^k , or $2p^k$ for some nonnegative integer k and and odd prime p.

This result is essential in the proof of the next lemma.

The Jacobi Symbol and Primality Test^a

Lemma 67 If $(M|N) = M^{(N-1)/2} \mod N$ for all $M \in \Phi(N)$, then N is prime. (Assume N is odd.)

- Assume N = mp, where p is an odd prime, gcd(m, p) = 1, and m > 1 (not necessarily prime).
- Let $r \in \Phi(p)$ such that $(r \mid p) = -1$.
- The Chinese remainder theorem says that there is an $M \in \Phi(N)$ such that

$$M = r \mod p,$$
 $M = 1 \mod m.$

^aMr. Clement Hsiao (R88526067) pointed out that the textbook's proof for Lemma 11.8 is incorrect while he was a senior in January 1999.

• By the hypothesis,

$$M^{(N-1)/2} = (M \mid N) = (M \mid p)(M \mid m) = -1 \mod N.$$

• Hence

$$M^{(N-1)/2} = -1 \bmod m.$$

• But because $M = 1 \mod m$,

$$M^{(N-1)/2} = 1 \bmod m,$$

a contradiction.

- Second, assume that $N = p^a$, where p is an odd prime and $a \ge 2$.
- By Theorem 66 (p. 499), there exists a primitive root r modulo p^a .
- From the assumption,

$$M^{N-1} = \left[M^{(N-1)/2}\right]^2 = (M|N)^2 = 1 \mod N$$

for all $M \in \Phi(N)$.

• As $r \in \Phi(N)$ (prove it), we have

$$r^{N-1} = 1 \bmod N.$$

• As r's exponent modulo $N = p^a$ is $\phi(N) = p^{a-1}(p-1)$,

$$p^{a-1}(p-1) | N-1,$$

which implies that $p \mid N-1$.

• But this is impossible given that $p \mid N$.

- Third, assume that $N = mp^a$, where p is an odd prime, gcd(m, p) = 1, m > 1 (not necessarily prime), and a is even.
- The proof mimics that of the second case.
- By Theorem 66 (p. 499), there exists a primitive root r modulo p^a .
- From the assumption,

$$M^{N-1} = \left[M^{(N-1)/2}\right]^2 = (M|N)^2 = 1 \mod N$$

for all $M \in \Phi(N)$.

• In particular,

$$M^{N-1} = 1 \bmod p^a \tag{7}$$

for all $M \in \Phi(N)$.

• The Chinese remainder theorem says that there is an $M \in \Phi(N)$ such that

$$M = r \mod p^a$$

$$M = 1 \mod m$$
.

• Because $M = r \mod p^a$ and Eq. (7),

$$r^{N-1} = 1 \bmod p^a.$$

The Proof (concluded)

• As r's exponent modulo $N = p^a$ is $\phi(N) = p^{a-1}(p-1)$,

$$p^{a-1}(p-1) | N-1,$$

which implies that $p \mid N-1$.

• But this is impossible given that $p \mid N$.

The Number of Witnesses to Compositeness

Theorem 68 (Solovay and Strassen (1977)) If N is an odd composite, then $(M|N) \neq M^{(N-1)/2} \mod N$ for at least half of $M \in \Phi(N)$.

- By Lemma 67 (p. 500) there is at least one $a \in \Phi(N)$ such that $(a|N) \neq a^{(N-1)/2} \mod N$.
- Let $B = \{b_1, b_2, \dots, b_k\} \subseteq \Phi(N)$ be the set of all distinct residues such that $(b_i|N) = b_i^{(N-1)/2} \mod N$.
- Let $aB = \{ab_i \mod N : i = 1, 2, \dots, k\}.$

The Proof (concluded)

- $\bullet |aB| = k.$
 - $-ab_i = ab_j \mod N$ implies $N|a(b_i b_j)$, which is impossible because gcd(a, N) = 1 and $N > |b_i b_j|$.
- $aB \cap B = \emptyset$ because

$$(ab_i)^{(N-1)/2} = a^{(N-1)/2}b_i^{(N-1)/2} \neq (a|N)(b_i|N) = (ab_i|N).$$

• Combining the above two results, we know

$$\frac{|B|}{\phi(N)} \le \frac{|B|}{|B \cup aB|} = 0.5.$$

```
1: if N is even but N \neq 2 then
     return "N is composite";
 3: else if N=2 then
    return "N is a prime";
 5: end if
 6: Pick M \in \{2, 3, ..., N - 1\} randomly;
 7: if gcd(M, N) > 1 then
     return "N is a composite";
 9: else
     if (M|N) \neq M^{(N-1)/2} \mod N then
10:
     return "N is composite";
11:
     else
12:
     return "N is a prime";
13:
     end if
14:
15: end if
```

Analysis

- The algorithm certainly runs in polynomial time.
- There are no false positives (for COMPOSITENESS).
 - When the algorithm says the number is composite, it is always correct.
- The probability of a false negative is at most one half.
 - If the input is composite, then the probability that the algorithm says the number is a prime is ≤ 0.5 .
- So it is a Monte Carlo algorithm for Compositeness.

The Improved Density Attack for COMPOSITENESS All numbers \(N \)

Witnesses to compositeness of *N* via common factor

Witnesses to compositeness of *N* via Jacobi