FSAT

- FSAT is this function problem:
 - Let $\phi(x_1, x_2, \ldots, x_n)$ be a boolean expression.
 - If ϕ is satisfiable, then return a satisfying truth assignment.
 - Otherwise, return "no."
- We next show that if $SAT \in P$, then FSAT has a polynomial-time algorithm.

An Algorithm for FSAT Using SAT

```
1: t := \epsilon; {Truth assignment.}
 2: if \phi \in SAT then
     for i = 1, 2, ..., n do
 4: if \phi[x_i = \text{true}] \in SAT then
 5: t := t \cup \{x_i = \mathtt{true}\};
 6: \phi := \phi[x_i = \text{true}];
7: else
 8: t := t \cup \{x_i = \mathtt{false}\};
    \phi := \phi[x_i = \mathtt{false}];
 9:
     end if
10:
     end for
11:
12:
       return t;
13: else
       return "no";
15: end if
```

Analysis

- If sat can be solved in polynomial time, so can fsat.
 - There are $\leq n+1$ calls to the algorithm for SAT.^a
 - Shorter boolean expressions than ϕ are used in each call to the algorithm for SAT.
- Hence SAT and FSAT are equally hard (or easy).
- Note that this reduction from FSAT to SAT is not a Karp reduction (recall p. 217).
- Instead, it calls sat multiple times as a subroutine.

^aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.

TSP and TSP (D) Revisited

- We are given n cities 1, 2, ..., n and integer distances $d_{ij} = d_{ji}$ between any two cities i and j.
- TSP (D) asks if there is a tour with a total distance at most B.
- TSP asks for a tour with the shortest total distance.
 - The shortest total distance is at most $\sum_{i,j} d_{ij}$.
 - * Recall that the input string contains d_{11}, \ldots, d_{nn} .
 - * Thus the shortest total distance is less than $2^{|x|}$ in magnitude, where x is the input (why?).
- We next show that if TSP $(D) \in P$, then TSP has a polynomial-time algorithm.

An Algorithm for TSP Using TSP (D)

- 1: Perform a binary search over interval $[0, 2^{|x|}]$ by calling TSP (D) to obtain the shortest distance, C;
- 2: **for** $i, j = 1, 2, \dots, n$ **do**
- 3: Call TSP (D) with B = C and $d_{ij} = C + 1$;
- 4: **if** "no" **then**
- 5: Restore d_{ij} to old value; {Edge [i, j] is critical.}
- 6: end if
- 7: end for
- 8: **return** the tour with edges whose $d_{ij} \leq C$;

Analysis

- An edge that is not on any optimal tour will be eliminated, with its d_{ij} set to C+1.
- An edge which is not on *all remaining* optimal tours will also be eliminated.
- So the algorithm ends with n edges which are not eliminated (why?).
- There are $O(|x|+n^2)$ calls to the algorithm for TSP (D).
- So if TSP (D) can be solved in polynomial time, so can TSP.
- Hence TSP (D) and TSP are equally hard (or easy).

Function Problems Are Not Harder than Decision Problems If P = NP

Theorem 57 Suppose that P = NP. Then, for every NP language L there exists a polynomial-time TM B that on input $x \in L$ outputs a certificate for x.

- We are looking for a certificate in the sense of Proposition 34 (p. 273).
- That is, a certificate y for every $x \in L$ such that

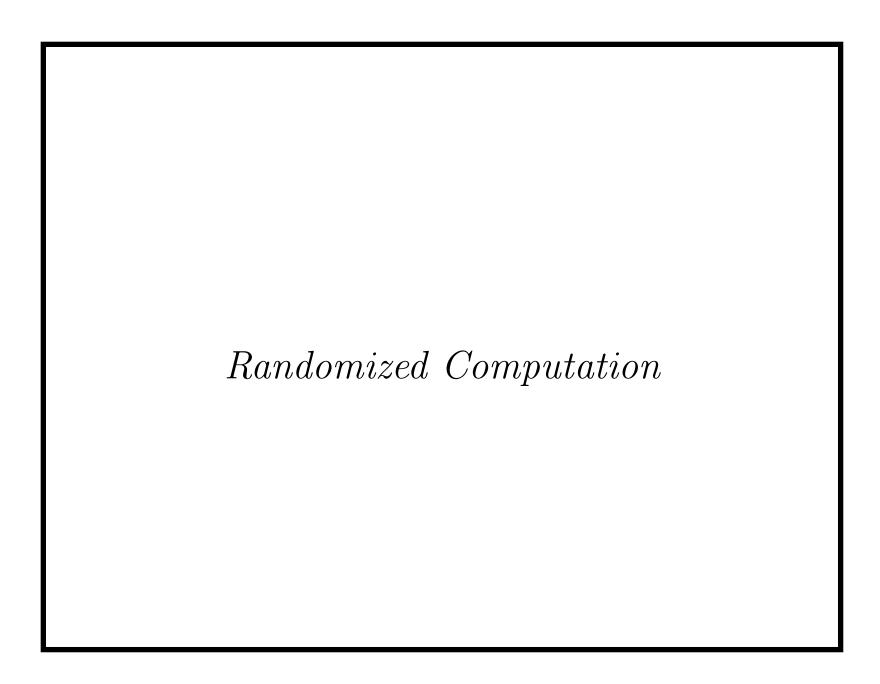
$$(x,y) \in R$$
,

where R is a polynomially decidable and polynomially balanced relation.

The Proof (concluded)

- Recall the algorithm for FSAT on p. 426.
- The reduction of Cook's Theorem L to SAT is a Levin reduction (p. 277).
- So there is a polynomial-time computable function R such that $x \in L$ iff $R(x) \in SAT$.
- In fact, the proof gives an efficient algorithm to transform a satisfying assignment of R(x) to a certificate for x, too.
- Therefore, we can use the algorithm for FSAT to come up with an assignment for R(x) and then map it back into a certificate for x.

	What If $NP = coNP?^\mathrm{a}$	
• Can y	ou say similar things?	
^a Contrib	outed by Mr. Ren-Shuo Liu (D98922016) on Oc	tober 27, 2009



I know that half my advertising works,

I just don't know which half.

— John Wanamaker

I know that half my advertising is a waste of money,
I just don't know which half!

— McGraw-Hill ad.

Randomized Algorithms^a

- Randomized algorithms flip unbiased coins.
- There are important problems for which there are no known efficient *deterministic* algorithms but for which very efficient randomized algorithms exist.
 - Extraction of square roots, for instance.
- There are problems where randomization is necessary.
 - Secure protocols.
- Randomized version can be more efficient.
 - Parallel algorithm for maximal independent set.

^aRabin (1976); Solovay and Strassen (1977).

"Four Most Important Randomized Algorithms" a

- 1. Primality testing.^b
- 2. Graph connectivity using random walks.^c
- 3. Polynomial identity testing.^d
- 4. Algorithms for approximate counting.^e

^aTrevisan (2006).

^bRabin (1976); Solovay and Strassen (1977).

^cAleliunas, Karp, Lipton, Lovász, and Rackoff (1979).

^dSchwartz (1980); Zippel (1979).

^eSinclair and Jerrum (1989).

Bipartite Perfect Matching

• We are given a **bipartite graph** G = (U, V, E).

$$- U = \{u_1, u_2, \dots, u_n\}.$$

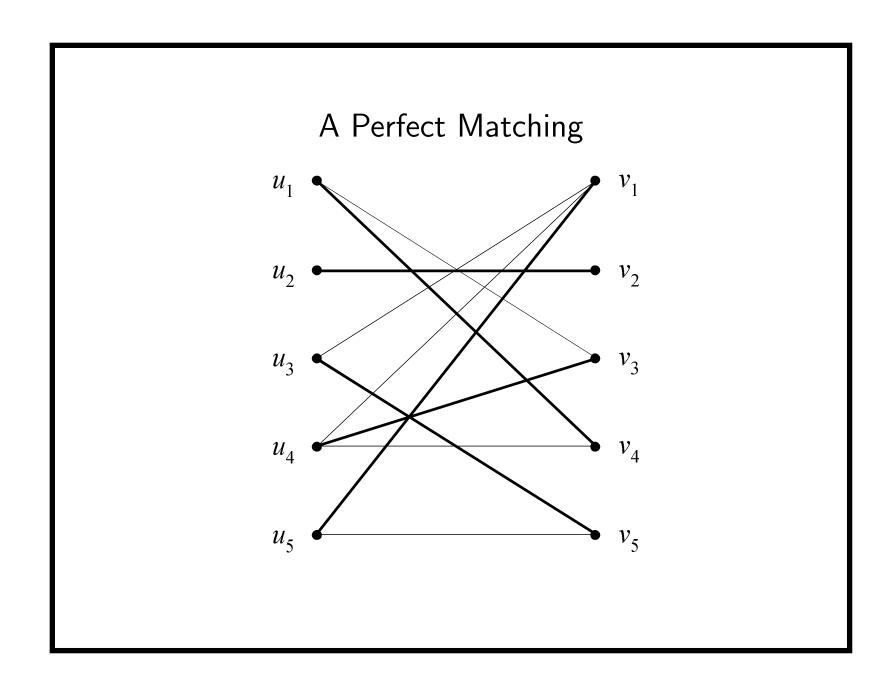
$$- V = \{v_1, v_2, \dots, v_n\}.$$

$$-E \subseteq U \times V.$$

- We are asked if there is a **perfect matching**.
 - A permutation π of $\{1, 2, \ldots, n\}$ such that

$$(u_i, v_{\pi(i)}) \in E$$

for all $i \in \{1, 2, ..., n\}$.



Symbolic Determinants

- We are given a bipartite graph G.
- Construct the $n \times n$ matrix A^G whose (i, j)th entry A^G_{ij} is a variable x_{ij} if $(u_i, v_j) \in E$ and zero otherwise.

Symbolic Determinants (concluded)

• The **determinant** of A^G is

$$\det(A^G) = \sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^n A_{i,\pi(i)}^G.$$
 (5)

- $-\pi$ ranges over all permutations of n elements.
- $-\operatorname{sgn}(\pi)$ is 1 if π is the product of an even number of transpositions and -1 otherwise.
- Equivalently, $\operatorname{sgn}(\pi) = 1$ if the number of (i, j)s such that i < j and $\pi(i) > \pi(j)$ is even.^a

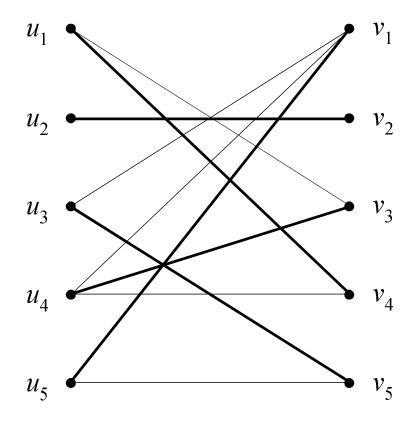
^aContributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, 2008.

Determinant and Bipartite Perfect Matching

- In $\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i,\pi(i)}^{G}$, note the following:
 - Each summand corresponds to a possible perfect matching π .
 - As all variables appear only once, all of these summands are different monomials and will not cancel.
- It is essentially an exhaustive enumeration.

Proposition 58 (Edmonds (1967)) G has a perfect matching if and only if $det(A^G)$ is not identically zero.





The Perfect Matching in the Determinant

• The matrix is

e matrix is
$$A^{G} = \begin{bmatrix} 0 & 0 & x_{13} & x_{14} & 0 \\ 0 & x_{22} & 0 & 0 & 0 \\ x_{31} & 0 & 0 & 0 & x_{35} \\ x_{41} & 0 & x_{43} & x_{44} & 0 \\ \hline x_{51} & 0 & 0 & 0 & x_{55} \end{bmatrix}$$

• $\det(A^G) = -x_{14}x_{22}x_{35}x_{43}x_{51} + x_{13}x_{22}x_{35}x_{44}x_{51} +$ $x_{14}x_{22}x_{31}x_{43}x_{55} - x_{13}x_{22}x_{31}x_{44}x_{55}$, each denoting a perfect matching.

How To Test If a Polynomial Is Identically Zero?

- $\det(A^G)$ is a polynomial in n^2 variables.
- There are exponentially many terms in $\det(A^G)$.
- Expanding the determinant polynomial is not feasible.
 - Too many terms.
- Observation: If $det(A^G)$ is *identically zero*, then it remains zero if we substitute *arbitrary* integers for the variables x_{11}, \ldots, x_{nn} .
- What is the likelihood of obtaining a zero when $det(A^G)$ is *not* identically zero?

Number of Roots of a Polynomial

Lemma 59 (Schwartz (1980)) Let $p(x_1, x_2, ..., x_m) \not\equiv 0$ be a polynomial in m variables each of degree at most d. Let $M \in \mathbb{Z}^+$. Then the number of m-tuples

$$(x_1, x_2, \dots, x_m) \in \{0, 1, \dots, M-1\}^m$$

such that $p(x_1, x_2, \dots, x_m) = 0$ is

$$\leq mdM^{m-1}$$
.

• By induction on m (consult the textbook).

Density Attack

• The density of roots in the domain is at most

$$\frac{mdM^{m-1}}{M^m} = \frac{md}{M}. (6)$$

- So suppose $p(x_1, x_2, \dots, x_m) \not\equiv 0$.
- Then a random

$$(x_1, x_2, \dots, x_m) \in \{0, 1, \dots, M-1\}^m$$

has a probability of $\leq md/M$ of being a root of p.

• Note that M is under our control.

Density Attack (concluded)

Here is a sampling algorithm to test if $p(x_1, x_2, ..., x_m) \not\equiv 0$.

- 1: Choose i_1, \ldots, i_m from $\{0, 1, \ldots, M-1\}$ randomly;
- 2: **if** $p(i_1, i_2, ..., i_m) \neq 0$ **then**
- 3: **return** "p is not identically zero";
- 4: **else**
- 5: **return** "p is (probably) identically zero";
- 6: end if

A Randomized Bipartite Perfect Matching Algorithm^a

We now return to the original problem of bipartite perfect matching.

- 1: Choose n^2 integers i_{11}, \ldots, i_{nn} from $\{0, 1, \ldots, 2n^2 1\}$ randomly;
- 2: Calculate $\det(A^G(i_{11},\ldots,i_{nn}))$ by Gaussian elimination;
- 3: **if** $\det(A^G(i_{11},\ldots,i_{nn})) \neq 0$ **then**
- 4: **return** "G has a perfect matching";
- 5: else
- 6: **return** "G has no perfect matchings";
- 7: end if

^aLovász (1979). According to Paul Erdős, Lovász wrote his first significant paper "at the ripe old age of 17."

Analysis

- If G has no perfect matchings, the algorithm will always be correct.
- Suppose G has a perfect matching.
 - The algorithm will answer incorrectly with probability at most $n^2d/(2n^2) = 0.5$ with d = 1 in Eq. (6) on p. 447.
 - Run the algorithm independently k times and output "G has no perfect matchings" if and only if they all say no.
 - The error probability is now reduced to at most 2^{-k} .

Analysis (concluded)^a

• Note that we are calculating

prob[algorithm answers "no" |G| has no perfect matchings], prob[algorithm answers "yes" |G| has a perfect matching].

• We are *not* calculating

 $\operatorname{prob}[G]$ has no perfect matchings | algorithm answers "no"], $\operatorname{prob}[G]$ has a perfect matching | algorithm answers "yes"].

^aThanks to a lively class discussion on May 1, 2008.

But How Large Can $det(A^G(i_{11}, \ldots, i_{nn}))$ Be?

• It is at most

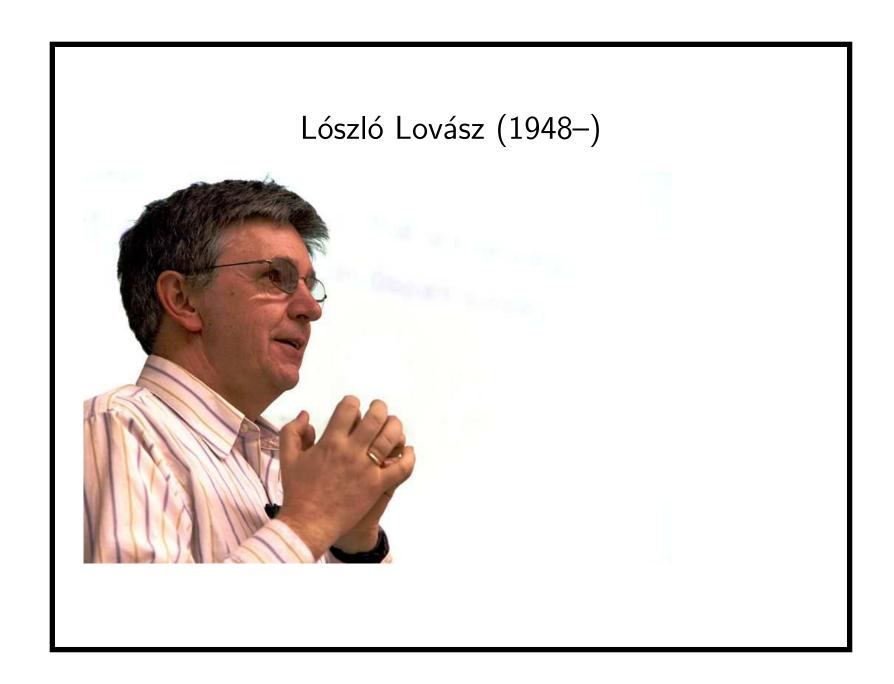
$$n! \left(2n^2\right)^n$$
.

- Stirling's formula says $n! \sim \sqrt{2\pi n} (n/e)^n$.
- Hence

$$\log_2 \det(A^G(i_{11}, \dots, i_{nn})) = O(n \log_2 n)$$

bits are sufficient for representing the determinant.

• We skip the details about how to make sure that all intermediate results are of polynomial sizes.



An Intriguing Question^a

- Is there an (i_{11}, \ldots, i_{nn}) that will always give correct answers for all bipartite graphs of 2n nodes?
- A theorem on p. 543 shows that such a witness exists!
- Whether it can be found efficiently is another question.

^aThanks to a lively class discussion on November 24, 2004.