NAESAT

- The naEsAt (for "not-all-equal" sat) is like 3sat.
- But there must be a satisfying truth assignment under which no clauses have the three literals equal in truth value.
- Equivalently, there is a truth assignment such that each clause has one literal assigned true and one literal assigned false.

NAESAT Is NP-Complete ${ }^{\text {a }}$

- Recall the reduction of CIRCUIT SAT to SAT on p. 231.
- It produced a CNF ϕ in which each clause has at most 3 literals.
- Add the same variable z to all clauses with fewer than 3 literals to make it a 3SAT formula.
- Goal: The new formula $\phi(z)$ is NAE-satisfiable if and only if the original circuit is satisfiable.

[^0]
The Proof (continued)

- Suppose T nae-satisfies $\phi(z)$.
- \bar{T} also NAE-satisfies $\phi(z)$.
- Under T or \bar{T}, variable z takes the value false.
- This truth assignment \mathcal{T} must still satisfy all clauses of ϕ.
* Note that $\mathcal{T} \models \phi$ with z being false.
- So it satisfies the original circuit.

The Proof (concluded)

- Suppose there is a truth assignment that satisfies the circuit.
- Then there is a truth assignment T that satisfies every clause of ϕ.
- Extend T by adding $T(z)=$ false to obtain T^{\prime}.
- T^{\prime} satisfies $\phi(z)$.
- So in no clauses are all three literals false under T^{\prime}.
- Under T^{\prime}, in no clauses are all three literals true.
* Need to review the detailed construction on p. 232 and p. 233.

Richard Karpa ${ }^{\text {(1935-) }}$

${ }^{\text {a Turing Award (1985). }}$

Undirected Graphs

- An undirected graph $G=(V, E)$ has a finite set of nodes, V, and a set of undirected edges, E.
- It is like a directed graph except that the edges have no directions and there are no self-loops.
- Use $[i, j]$ to denote the fact that there is an edge between node i and node j.

Independent Sets

- Let $G=(V, E)$ be an undirected graph.
- $I \subseteq V$.
- I is independent if whenever $i, j \in I$, there is no edge between i and j.
- The independent set problem: Given an undirected graph and a goal K, is there an independent set of size K ?
- Many applications.

INDEPENDENT SET Is NP-Complete

- This problem is in NP: Guess a set of nodes and verify that it is independent and meets the count.
- If a graph contains a triangle, any independent set can contain at most one node of the triangle.
- The results of the reduction will be graphs whose nodes can be partitioned into m disjoint triangles.
- We will reduce 3sat to independent set.

The Proof (continued)

- Let ϕ be an instance of 3sat with m clauses.
- We will construct graph G (with constraints as said) with $K=m$ such that ϕ is satisfiable if and only if G has an independent set of size K.
- There is a triangle for each clause with the literals as the nodes.
- Add additional edges between x and $\neg x$ for every variable x.
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$

Same literals that appear in different clauses are on distinct nodes.

The Proof (continued)

- Suppose G has an independent set I of size $K=m$.
- An independent set can contain at most m nodes, one from each triangle.
- An independent set of size m exists if and only if it contains exactly one node from each triangle.
- Truth assignment T assigns true to those literals in I.
- T is consistent because contradictory literals are connected by an edge; hence both cannot be in I.
- T satisfies ϕ because it has a node from every triangle, thus satisfying every clause. ${ }^{\text {a }}$

[^1]
The Proof (concluded)

- Suppose a satisfying truth assignment T exists for ϕ.
- Collect one node from each triangle whose literal is true under T.
- The choice is arbitrary if there is more than one true literal.
- This set of m nodes must be independent by construction.
* Both literals x and $\neg x$ cannot be assigned true.

Other independent set-Related NP-Complete Problems

Corollary 36 INDEPENDENT SET is NP-complete for 4-degree graphs.

Theorem 37 Independent set is NP-complete for planar graphs.

Theorem 38 (Garey and Johnson (1977))
INDEPENDENT SET is NP-complete for 3-degree planar graphs.

NODE COVER

- We are given an undirected graph G and a goal K.
- node cover: Is there a set C with K or fewer nodes such that each edge of G has at least one of its endpoints in C ?

NODE COVER Is NP-Complete

Corollary 39 node cover is NP-complete.

- I is an independent set of $G=(V, E)$ if and only if $V-I$ is a node cover of G.

CLIQUE

- We are given an undirected graph G and a goal K.
- CLIqUE asks if there is a set C with K nodes such that whenever $i, j \in C$, there is an edge between i and j.

CLIQUE Is NP-Complete

Corollary 40 Clique is NP-complete.

- Let \bar{G} be the complement of G, where $[x, y] \in \bar{G}$ if and only if $[x, y] \notin G$.
- I is a clique in $G \Leftrightarrow I$ is an independent set in \bar{G}.

MIN CUT and MAX CUT

- A cut in an undirected graph $G=(V, E)$ is a partition of the nodes into two nonempty sets S and $V-S$.
- The size of a cut $(S, V-S)$ is the number of edges between S and $V-S$.
- min cut $\in \mathrm{P}$ by the maxflow algorithm.
- max cut asks if there is a cut of size at least K.
- K is part of the input.

MIN CUT and MAX CUT (concluded)

- mAX CUT has applications in VLSI layout.
- The minimum area of a VLSI layout of a graph is not less than the square of its maximum cut size. ${ }^{\text {a }}$

[^2]
max cut Is NP-Complete ${ }^{\text {a }}$

- We will reduce naesat to max cut.
- Given an instance ϕ of 3sat with m clauses, we shall construct a graph $G=(V, E)$ and a goal K such that:
- There is a cut of size at least K if and only if ϕ is NAE-satisfiable.
- Our graph will have multiple edges between two nodes.
- Each such edge contributes one to the cut if its nodes are separated.

[^3]
The Proof

- Suppose ϕ 's m clauses are $C_{1}, C_{2}, \ldots, C_{m}$.
- The boolean variables are $x_{1}, x_{2}, \ldots, x_{n}$.
- G has $2 n$ nodes: $x_{1}, x_{2}, \ldots, x_{n}, \neg x_{1}, \neg x_{2}, \ldots, \neg x_{n}$.
- Each clause with 3 distinct literals makes a triangle in G.
- For each clause with two identical literals, there are two parallel edges between the two distinct literals.
- No need to consider clauses with one literal (why?).
- For each variable x_{i}, add n_{i} copies of edge $\left[x_{i}, \neg x_{i}\right]$, where n_{i} is the number of occurrences of x_{i} and $\neg x_{i}$ in $\phi .{ }^{a}$

[^4]

The Proof (continued)

- Set $K=5 m$.
- Suppose there is a cut $(S, V-S)$ of size $5 m$ or more.
- A clause (a triangle or two parallel edges) contributes at most 2 to a cut no matter how you split it.
- Suppose both x_{i} and $\neg x_{i}$ are on the same side of the cut.
- Then they together contribute at most $2 n_{i}$ edges to the cut.
- They appear in at most n_{i} different clauses.
- A clause contributes at most 2 to a cut.

The Proof (continued)

- Either x_{i} or $\neg x_{i}$ contributes at most n_{i} to the cut by the pigeonhole principle.
- Changing the side of that literal does not decrease the size of the cut.
- Hence we assume variables are separated from their negations.
- The total number of edges in the cut that join opposite literals is $\sum_{i} n_{i}=3 m$.
$-\sum_{i} n_{i}=3 m$ is the total number of literals.

The Proof (concluded)

- The remaining $2 m$ edges in the cut must come from the m triangles or parallel edges that correspond to the clauses.
- Each can contribute at most 2 to the cut.
- So all are split.
- A split clause means at least one of its literals is true and at least one false.
- The other direction is left as an exercise.

- $\left(x_{1} \vee x_{2} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)$.
- The cut size is $13<5 \times 3=15$.

- $\left(x_{1} \vee x_{2} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)$.
- The cut size is now 15 .

Remarks

- We had proved that max cut is NP-complete for multigraphs.
- How about proving the same thing for simple graphs? ${ }^{\text {a }}$
- For 4 sat, how do you modify the proof? ${ }^{\text {b }}$
- All NP-complete problems are mutually reducible by definition as an NP-complete problem is in NP. ${ }^{\text {c }}$
- So they are equally hard in this sense. ${ }^{\text {d }}$

[^5]
[^0]: ${ }^{a}$ Karp (1972).

[^1]: ${ }^{\text {a }}$ The variables without a truth value can be assigned arbitrarily. Contributed by Mr. Chun-Yuan Chen (R99922119) on November 2, 2010.

[^2]: ${ }^{\text {a Raspaud, Sýkora, and Vrťo (1995); Mak and Wong (2000). }}$

[^3]: ${ }^{\text {a }}$ Garey, Johnson, and Stockmeyer (1976).

[^4]: ${ }^{\text {a }}$ Regardless of whether both x_{i} and $\neg x_{i}$ occur in ϕ.

[^5]: ${ }^{\text {a }}$ Contributed by Mr. Tai-Dai Chou (J93922005) on June 2, 2005.
 ${ }^{\mathrm{b}}$ Contributed by Mr. Chien-Lin Chen (J94922015) on June 8, 2006.
 ${ }^{\mathrm{c}}$ Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.
 ${ }^{\mathrm{d}}$ Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.

