Theory of Computation

Solutions to Homework 1

Problem 1. Consider a deterministic k-tape Turing machine with q states and σ alphabetic symbols. Suppose this Turing machine halts after using a maximum of h cells on each of the tapes. What is the maximum running time?

Proof.
$$q \times \sigma^{hk} \times h^k$$

Problem 2. Cantor's theorem says that the set of all subsets of \mathbb{N} (i.e. $2^{\mathbb{N}}$) is infinite and not countable. But consider the following counterargument. Let $p_1 < p_2 < p_3 < \cdots$ be all the prime numbers. Define the following function from $2^{\mathbb{N}}$ to \mathbb{N} :

$$f(X) = p_1^{n_1} p_2^{n_2} p_3^{n_3} \dots,$$

where $X = \{n_1, n_2, n_3, \dots\}$ and $n_1 < n_2 < n_3 < \dots$. Clearly, f maps every subset of \mathbb{N} into some number of \mathbb{N} . So, $2^{\mathbb{N}}$ is countable, contradicting Cantor's theorem. What is wrong with the argument? ¹

Proof. Suppose $X = \mathbb{N} = \{1, 2, 3, \dots\}$. Then $f(X) = f(\mathbb{N}) = p_1^1 p_2^2 p_3^3 \cdots$, an infinite number. Since infinity is not a natural number, there is a trivial subset of \mathbb{N} mapped by f into a number not in \mathbb{N} . Hence f is not a valid mapping.

 $^{^1{\}rm This}$ problem was contributed by Mr. Wen-Chie Yang (R92922069) on October 3, 2003.