#### Decidability and Recursive Languages

- Let  $L \subseteq (\Sigma \{ \coprod \})^*$  be a **language**, i.e., a set of strings of symbols with a *finite* length.
  - For example,  $\{0, 01, 10, 210, 1010, \ldots\}$ .
- Let M be a TM such that for any string x:
  - If  $x \in L$ , then M(x) = "yes."
  - If  $x \notin L$ , then M(x) = "no."
- We say M decides L.
- If L is decided by some TM, then L is **recursive**.

#### Recursive Languages: Examples

- The set of palindromes over any alphabet is recursive.
- The set of prime numbers  $\{2,3,5,7,11,13,17,\dots\}$  is recursive.
- The set of C programs that do not contain a while, a for, or a goto is recursive.
- The set of C programs that do not contain an infinite loop is *not* recursive (to be proved later).

Acceptability and Recursively Enumerable Languages

- Let  $L \subseteq (\Sigma \{ \coprod \})^*$  be a language.
- Let M be a TM such that for any string x:
  - If  $x \in L$ , then M(x) = "yes."
  - If  $x \notin L$ , then  $M(x) = \nearrow$ .
- We say M accepts L.

# Acceptability and Recursively Enumerable Languages (concluded)

- If L is accepted by some TM, then L is called a recursively enumerable language.<sup>a</sup>
  - A recursively enumerable language can be generated by a TM, thus the name.
  - That is, there is an algorithm such that for every  $x \in L$ , it will be printed out eventually.
  - This algorithm may never terminate.

<sup>&</sup>lt;sup>a</sup>Post (1944).

## Emil Post (1897–1954)



#### Recursive and Recursively Enumerable Languages

**Proposition 1** If L is recursive, then it is recursively enumerable.

- Let TM M decide L.
- We need to design a TM that accepts L.
- We next modify M's program to obtain M' that accepts L.
- M' is identical to M except that when M is about to halt with a "no" state, M' goes into an infinite loop.
- M' accepts L.

#### Recursively Enumerable Languages: Examples

- The set of C program-input pairs that do run into an infinite loop is recursively enumerable.
  - Just run it in a simulator environment.
- The set of C programs that contain an infinite loop is not recursively enumerable (to be proved later).
- The set of valid statements of an axiomatic system is recursively enumerable.
  - Try all possible proofs systematically.

#### Turing-Computable Functions

- Let  $f:(\Sigma \{ \sqcup \})^* \to \Sigma^*$ .
  - Optimization problems, root finding problems, etc.
- Let M be a TM with alphabet  $\Sigma$ .
- M computes f if for any string  $x \in (\Sigma \{ \coprod \})^*$ , M(x) = f(x).
- We call f a **recursive function**<sup>a</sup> if such an M exists.

<sup>&</sup>lt;sup>a</sup>Kurt Gödel (1931).

# Kurt Gödel (1906–1978)



#### Church's Thesis or the Church-Turing Thesis

- What is computable is Turing-computable; TMs are algorithms.<sup>a</sup>
- Many other computation models have been proposed.
  - Recursive function (Gödel),  $\lambda$  calculus (Church), formal language (Post), assembly language-like RAM (Shepherdson & Sturgis), boolean circuits (Shannon), extensions of the Turing machine (more strings, two-dimensional strings, and so on), etc.
- All have been proved to be equivalent.

<sup>&</sup>lt;sup>a</sup>Kleene (1953).

# Church's Thesis or the Church-Turing Thesis (concluded)

- No "intuitively computable" problems have been shown not to be Turing-computable yet.
- The thesis is<sup>a</sup>

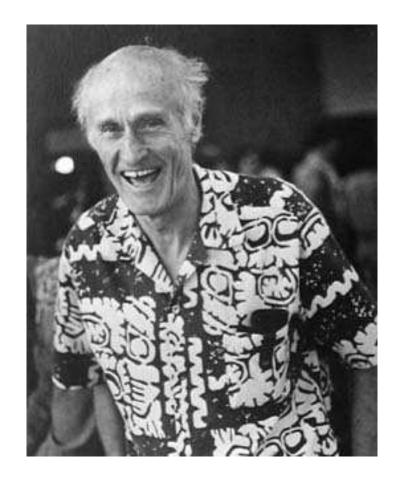
a profound claim about the physical laws of our universe, i.e.: any physical system that purports to be a computer is not capable of any computational task that a Turing machine is incapable of.

<sup>a</sup>Smith (1998).

# Alonso Church (1903–1995)



## Stephen Kleene (1909–1994)



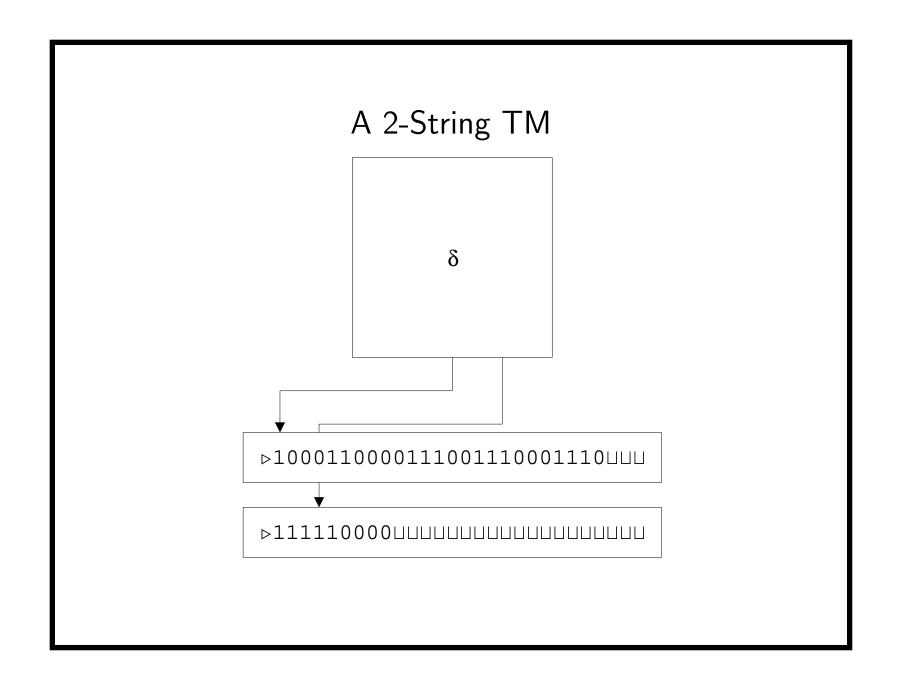
#### Extended Church's Thesis<sup>a</sup>

- All "reasonably succinct encodings" of problems are polynomially related.
  - Representations of a graph as an adjacency matrix and as a linked list are both succinct.
  - The unary representation of numbers is not succinct.
  - The binary representation of numbers is succinct.
    - \* 1001 vs. 111111111.
- All numbers for TMs will be binary from now on.

<sup>&</sup>lt;sup>a</sup>Some call it "polynomial Church's thesis," which Lószló Lovász attributed to Leonid Levin.

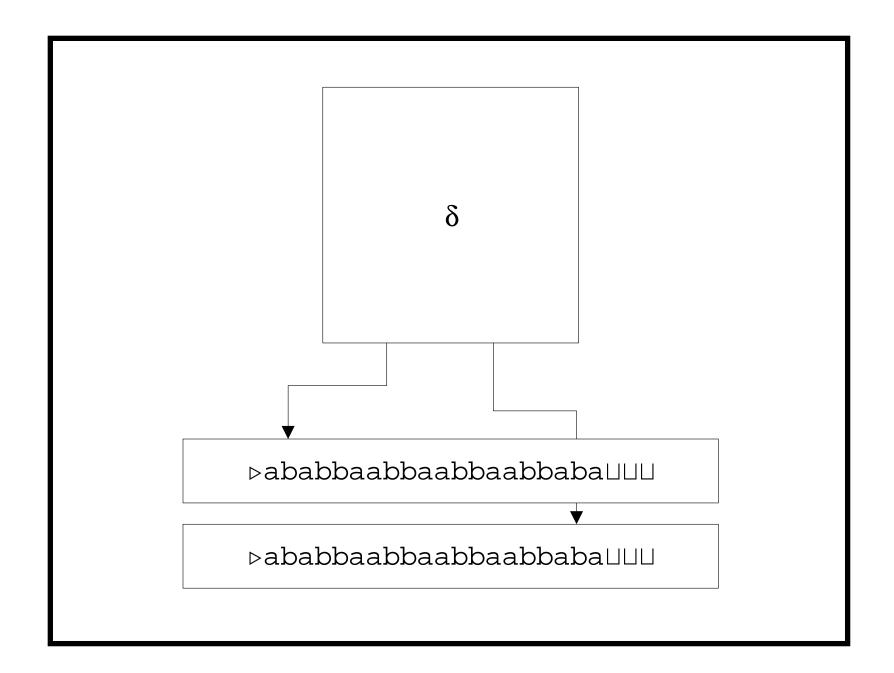
#### Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple  $M = (K, \Sigma, \delta, s)$ .
- $K, \Sigma, s$  are as before.
- $\delta: K \times \Sigma^k \to (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times (\Sigma \times \{\leftarrow, \rightarrow, -\})^k$ .
- All strings start with a >.
- The first string contains the input.
- Decidability and acceptability are the same as before.
- When TMs compute functions, the output is on the last (kth) string.



#### PALINDROME Revisited

- A 2-string TM can decide PALINDROME in O(n) steps.
  - It copies the input to the second string.
  - The cursor of the first string is positioned at the first symbol of the input.
  - The cursor of the second string is positioned at the last symbol of the input.
  - The two cursors are then moved in opposite directions until the ends are reached.
  - The machine accepts if and only if the symbols under the two cursors are identical at all steps.



#### Configurations and Yielding

• The concept of configuration and yielding is the same as before except that a configuration is a (2k + 1)-tuple

$$(q, w_1, u_1, w_2, u_2, \dots, w_k, u_k).$$

- $-w_iu_i$  is the *i*th string.
- The ith cursor is reading the last symbol of  $w_i$ .
- Recall that  $\triangleright$  is each  $w_i$ 's first symbol.
- The k-string TM's initial configuration is

$$(s, \underbrace{\triangleright, x, \triangleright, \epsilon}_{1}, \underbrace{\triangleright, \epsilon, \cdots, \triangleright, \epsilon}_{2}).$$

#### Time Complexity

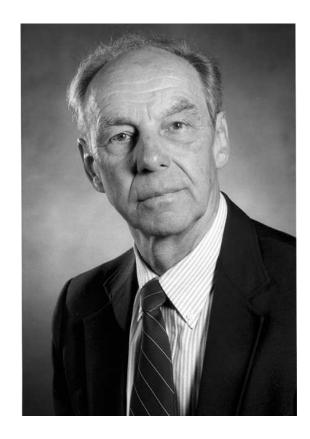
- The multistring TM is the basis of our notion of the time expended by TM computations.
- If a k-string TM M halts after t steps on input x, then the **time required by** M **on input** x is t.
- If  $M(x) = \nearrow$ , then the time required by M on x is  $\infty$ .
- Machine M operates within time f(n) for  $f: \mathbb{N} \to \mathbb{N}$  if for any input string x, the time required by M on x is at most f(|x|).
  - |x| is the length of string x.
- Function f(n) is a **time bound** for M.

#### Time Complexity Classes<sup>a</sup>

- Suppose language  $L \subseteq (\Sigma \{ \coprod \})^*$  is decided by a multistring TM operating in time f(n).
- We say  $L \in \text{TIME}(f(n))$ .
- TIME(f(n)) is the set of languages decided by TMs with multiple strings operating within time bound f(n).
- TIME(f(n)) is a **complexity class**.
  - Palindrome is in TIME(f(n)), where f(n) = O(n).

<sup>&</sup>lt;sup>a</sup>Hartmanis and Stearns (1965); Hartmanis, Lewis, and Stearns (1965).

## Juris Hartmanis<sup>a</sup> (1928–)



<sup>a</sup>Turing Award (1993).

## Richard Edwin Stearns<sup>a</sup> (1936–)



<sup>a</sup>Turing Award (1993).

#### The Simulation Technique

**Theorem 2** Given any k-string M operating within time f(n), there exists a (single-string) M' operating within time  $O(f(n)^2)$  such that M(x) = M'(x) for any input x.

- The single string of M' implements the k strings of M.
- Represent configuration  $(q, w_1, u_1, w_2, u_2, \dots, w_k, u_k)$  of M by configuration

$$(q, \triangleright w_1'u_1 \triangleleft w_2'u_2 \triangleleft \cdots \triangleleft w_k'u_k \triangleleft \triangleleft)$$

of M'.

- $\triangleleft$  is a special delimiter.
- $-w'_i$  is  $w_i$  with the first<sup>a</sup> and last symbols "primed."

<sup>&</sup>lt;sup>a</sup>The first symbol is always  $\triangleright$ .

#### The Proof (continued)

- The "priming" of the last symbol of  $w_i$  ensures that M' knows which symbol is under the cursor for each simulated string.<sup>a</sup>
- We use the primed version of the first symbol of  $w_i$  (so  $\triangleright$  becomes  $\triangleright'$ ).
- Recall the requirement on p. 20 that  $\delta(q, \triangleright) = (p, \triangleright, \rightarrow)$  so that the cursor is not allowed to move to the left of  $\triangleright$ .
- So the single cursor of M' can move between the simulated strings of M.

<sup>&</sup>lt;sup>a</sup>Added because of comments made by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

<sup>&</sup>lt;sup>b</sup>Thanks to a lively discussion on September 22, 2009.

### The Proof (continued)

• The initial configuration of M' is

$$(s, \triangleright \triangleright' x \lhd \triangleright' \lhd \cdots \triangleright' \lhd \lhd).$$

- We simulate each move of M thus:
  - 1. M' scans the string to pick up the k symbols under the cursors.
    - The states of M' must be enlarged to include  $K \times \Sigma^k$  to remember them.
    - The transition functions of M' must also reflect it.
  - 2. M' then changes the string to reflect the overwriting of symbols and cursor movements of M.

#### The Proof (continued)

- It is possible that some strings of M need to be lengthened (see next page).
  - The linear-time algorithm on p. 34 can be used for each such string.
- The simulation continues until M halts.
- M' then erases all strings of M except the last one.
- Since M halts within time f(|x|), none of its strings ever becomes longer than f(|x|).
- The length of the string of M' at any time is O(kf(|x|)).

<sup>&</sup>lt;sup>a</sup>We tacitly assume  $f(n) \ge n$ .

#### The Proof (concluded)

- Simulating each step of M takes, per string of M, O(kf(|x|)) steps.
  - -O(f(|x|)) steps to collect information.
  - O(kf(|x|)) steps to write and, if needed, to lengthen the string.
- M' takes  $O(k^2 f(|x|))$  steps to simulate each step of M because there are k strings.
- As there are f(|x|) steps of M to simulate, M' operates within time  $O(k^2f(|x|)^2)$ .



**Theorem 3** Let  $L \in TIME(f(n))$ . Then for any  $\epsilon > 0$ ,  $L \in TIME(f'(n))$ , where  $f'(n) = \epsilon f(n) + n + 2$ .

<sup>a</sup>Hartmanis and Stearns (1965).

#### Implications of the Speedup Theorem

- State size can be traded for speed.
  - $-m^k \cdot |\Sigma|^{3mk}$ -fold increase to gain a speedup of O(m).
- If f(n) = cn with c > 1, then c can be made arbitrarily close to 1.
- If f(n) is superlinear, say  $f(n) = 14n^2 + 31n$ , then the constant in the leading term (14 in this example) can be made arbitrarily small.
  - Arbitrary linear speedup can be achieved.<sup>a</sup>
  - This justifies the big-O notation for the analysis of algorithms.

<sup>&</sup>lt;sup>a</sup>Can you apply the theorem multiple times to achieve superlinear speedup? Thanks to a question by a student on September 21, 2010.

P

- By the linear speedup theorem, any polynomial time bound can be represented by its leading term  $n^k$  for some  $k \geq 1$ .
- If L is a polynomially decidable language, it is in  $TIME(n^k)$  for some  $k \in \mathbb{N}$ .
  - Clearly,  $TIME(n^k) \subseteq TIME(n^{k+1})$ .
- The union of all polynomially decidable languages is denoted by P:

$$P = \bigcup_{k>0} TIME(n^k).$$

• P contains problems that can be efficiently solved.

#### Space Complexity

- Consider a k-string TM M with input x.
- Assume non-| | is never written over by | |.a
  - The purpose is not to artificially downplay the space requirement.
- If M halts in configuration  $(H, w_1, u_1, w_2, u_2, \ldots, w_k, u_k)$ , then the **space required** by M on input x is  $\sum_{i=1}^{k} |w_i u_i|$ .

<sup>&</sup>lt;sup>a</sup>Corrected by Ms. Chuan-Ju Wang (R95922018) on September 27, 2006.

#### Space Complexity (continued)

- Suppose we do not charge the space used only for input and output.
- Let k > 2 be an integer.
- A k-string Turing machine with input and output is a k-string TM that satisfies the following conditions.
  - The input string is read-only.
  - The last string, the output string, is write-only.
  - So the cursor never moves to the left.
  - The cursor of the input string does not wander off into the | |s.

### Space Complexity (concluded)

- If M is a TM with input and output, then the space required by M on input x is  $\sum_{i=2}^{k-1} |w_i u_i|$ .
- Machine M operates within space bound f(n) for  $f: \mathbb{N} \to \mathbb{N}$  if for any input x, the space required by M on x is at most f(|x|).

#### Space Complexity Classes

- $\bullet$  Let L be a language.
- Then

$$L \in SPACE(f(n))$$

if there is a TM with input and output that decides L and operates within space bound f(n).

- SPACE(f(n)) is a set of languages.
  - Palindrome  $\in$  SPACE(log n): Keep 3 counters.
- As in the linear speedup theorem (Theorem 3), constant coefficients do not matter.

#### Nondeterminism<sup>a</sup>

- A nondeterministic Turing machine (NTM) is a quadruple  $N = (K, \Sigma, \Delta, s)$ .
- $K, \Sigma, s$  are as before.
- $\Delta \subseteq K \times \Sigma \times (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}$  is a relation, not a function.<sup>b</sup>
  - For each state-symbol combination, there may be multiple valid next steps—or none at all.
  - Multiple instructions may be applicable.

<sup>&</sup>lt;sup>a</sup>Rabin and Scott (1959).

<sup>&</sup>lt;sup>b</sup>Corrected by Mr. Jung-Ying Chen (D95723006) on September 23, 2008.

#### Nondeterminism (concluded)

• As before, a program contains lines of codes:

$$(q_1, \sigma_1, p_1, \rho_1, D_1) \in \Delta,$$

$$(q_2, \sigma_2, p_2, \rho_2, D_2) \in \Delta,$$

$$\vdots$$

$$(q_n, \sigma_n, p_n, \rho_n, D_n) \in \Delta.$$

- In the deterministic case (p. 21), we wrote

$$\delta(q_i, \sigma_i) = (p_i, \rho_i, D_i).$$

• A configuration yields another configuration in one step if there exists a rule in  $\Delta$  that makes this happen.

## Michael O. Rabin<sup>a</sup> (1931–)

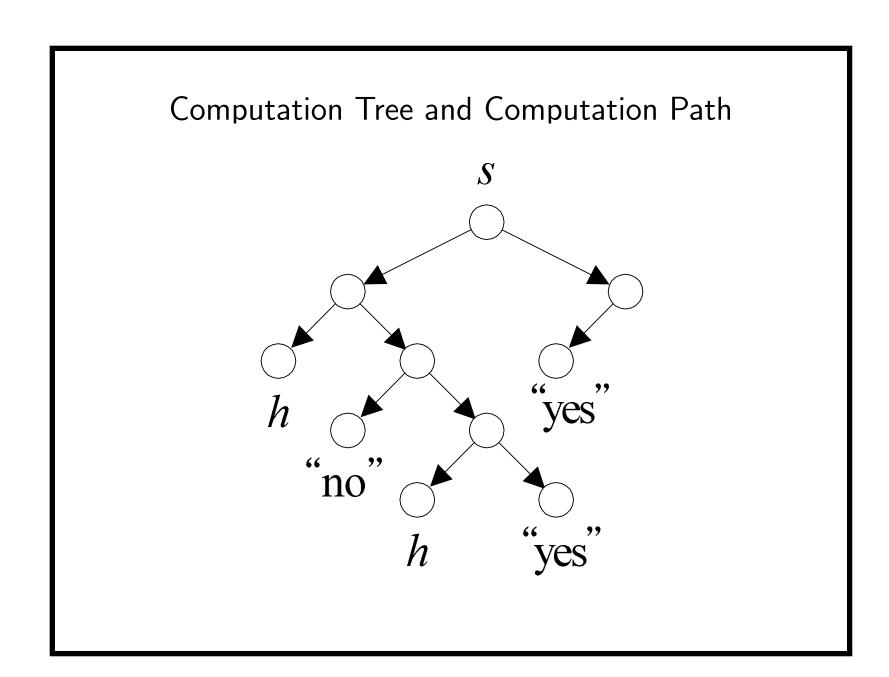


<sup>a</sup>Turing Award (1976).

## Dana Stewart Scott<sup>a</sup> (1932–)



<sup>a</sup>Turing Award (1976).



#### Decidability under Nondeterminism

- Let L be a language and N be an NTM.
- N decides L if for any  $x \in \Sigma^*$ ,  $x \in L$  if and only if there is a sequence of valid configurations that ends in "yes."
  - It is not required that the NTM halts in all computation paths.<sup>a</sup>
  - If  $x \notin L$ , no nondeterministic choices should lead to a "yes" state.
- What is key is the algorithm's overall behavior not whether it gives a correct answer for each particular run.
- Determinism is a special case of nondeterminism.

<sup>&</sup>lt;sup>a</sup>So "accepts" may be a more proper term.

#### An Example

- Let L be the set of logical conclusions of a set of axioms.
  - Predicates not in L may be false under the axioms.
  - They may also be independent of the axioms.
    - \* That is, they can be assumed true or false without contradicting the axioms.

## An Example (concluded)

- Let  $\phi$  be a predicate whose validity we would like to prove.
- Consider the nondeterministic algorithm:

```
1: b := true;
```

- 2: while the input predicate  $\phi \neq b$  do
- 3: Generate a logical conclusion of b by applying one of the axioms; {Nondeterministic choice.}
- 4: Assign this conclusion to b;
- 5: end while
- 6: "yes";
- This algorithm decides L.