Problem 1 (25 points). Show that if $\text{NP} \subseteq \text{NSPACE}(n^2)$, then $\text{NP} \neq \text{PSPACE}$.

Proof. By Savitch’s theorem, $\text{NSPACE}(n^2) \subseteq \text{SPACE}(n^4)$. By the space-hierarchy theorem, $\text{SPACE}(n^4) \subset \text{PSPACE}$. Hence $\text{NP} \subseteq \text{NSPACE}(n^2)$ implies $\text{NP} \subseteq \text{NSPACE}(n^2) \subseteq \text{SPACE}(n^4) \subset \text{PSPACE}$.

Problem 2 (25 points). Let the mix Hamiltonian path problem ask whether, given two undirected graphs, exactly one of them has a Hamiltonian path. Prove or disprove that mix Hamiltonian path is NP-hard.

Proof. We present a logarithmic-space reduction from Hamiltonian path to mix Hamiltonian path, thus establishing the NP-hardness of mix Hamiltonian path. Let G_0 be a fixed undirected graph without a Hamiltonian path. Given an undirected graph G, the reduction outputs G and G_0. Clearly, G has a Hamiltonian path if and only if exactly one of G and G_0 does.

Problem 3 (25 points). It is known that EXP-hard languages exist. Can every NP-complete language be reduced to an EXP-hard language? Briefly justify your answer.

Proof. Clearly, $\text{NP} \subseteq \text{EXP}$. By definition, all languages in EXP, including the NP-complete ones, can be reduced to an EXP-hard language.

Problem 4 (25 points). Show that if both L and \overline{L} are recursively enumerable languages, then L is recursive.

Proof. Suppose that L and \overline{L} are accepted by Turing machines M and \overline{M}, respectively. Then L is decided by Turing machine M', defined as follows. On input x, M' simulates on two different strings both M and \overline{M} in an
interleaved fashion. That is, it simulates a step of M on one string, then a step of \bar{M} on the other, then again another step of M on the first, and so on. Since M accepts L, \bar{M} accepts its complement and x must be in one of the two, it follows that one of the two machines will halt and accept. If M accepts, then M' halts on state “yes.” If \bar{M} accepts, then M' halts on “no.”