BPP's Circuit Complexity

Theorem 74 (Adleman (1978)) All languages in BPP have polynomial circuits.

- Our proof will be *nonconstructive* in that only the existence of the desired circuits is shown.
 - Something exists if its probability of existence is nonzero.
- It is not known how to efficiently generate circuit C_n given 1^n .
- If the construction of C_n can be made efficient, then P = BPP, an unlikely result.

The Proof

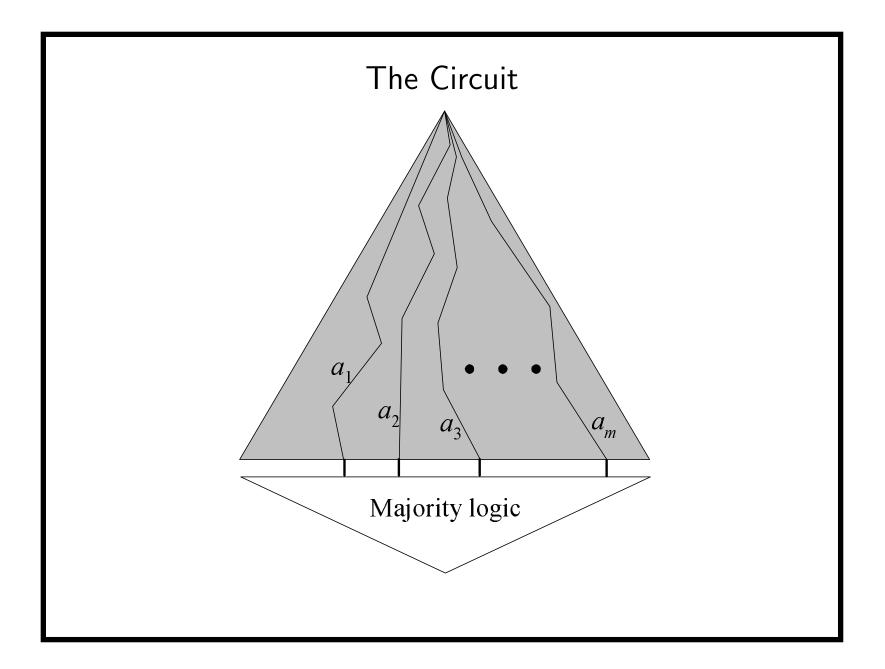
- Let $L \in BPP$ be decided by a precise NTM N by clear majority.
- We shall prove that L has polynomial circuits C_0, C_1, \ldots
- Suppose N runs in time p(n), where p(n) is a polynomial.
- Let $A_n = \{a_1, a_2, \dots, a_m\}$, where $a_i \in \{0, 1\}^{p(n)}$.
- Let m = 12(n+1).
- Each $a_i \in A_n$ represents a sequence of nondeterministic choices—i.e., a computation path—for N.
 - There are $2^{mp(n)}$ such A_n .

The Proof (continued)

- Let x be an input with |x| = n.
- Circuit C_n simulates N on x with each sequence of choices in A_n and then takes the majority of the m outcomes.
- Because N with a_i is a polynomial-time TM, it can be simulated by polynomial circuits of size $O(p(n)^2)$.

- See the proof of Proposition 72 (p. 538).

- The size of C_n is therefore $O(mp(n)^2) = O(np(n)^2)$, a polynomial.
- We next prove the existence of A_n making C_n correct on *all* inputs.



The Proof (continued)

- Call a_i bad if it leads N to a false positive or a false negative answer.
- Select A_n uniformly randomly.
- For each $x \in \{0,1\}^n$, 1/4 of the computations of N are erroneous.
- Because the sequences in A_n are chosen randomly and independently, the expected number of bad a_i 's is m/4.
- By the Chernoff bound (p. 519), the probability that the number of bad a_i 's is m/2 or more is at most

$$e^{-m/12} < 2^{-(n+1)}.$$

The Proof (continued)

- The error probability is $< 2^{-(n+1)}$ for each $x \in \{0,1\}^n$.
- The probability that there is an x such that A_n results in an incorrect answer is $< 2^n 2^{-(n+1)} = 2^{-1}$.

 $-\operatorname{prob}[A \cup B \cup \cdots] \leq \operatorname{prob}[A] + \operatorname{prob}[B] + \cdots.$

- Note that each A_n yields a circuit.
- Recall that there are $2^{mp(n)}$ circuits.
- We just showed that at least half of them make no mistakes.

The Proof (concluded)

- So with probability ≥ 0.5 , a random A_n produces a correct C_n for all inputs of length n.
- Because this probability exceeds 0, an A_n that makes majority vote work for all inputs of length n exists.
- Hence a correct C_n exists.^a

^aQuine (1948), "To be is to be the value of a bound variable."

Cryptography

Whoever wishes to keep a secret must hide the fact that he possesses one. — Johann Wolfgang von Goethe (1749–1832)

Cryptography

- Alice (A) wants to send a message to **Bob** (B) over a channel monitored by **Eve** (eavesdropper).
- The protocol should be such that the message is known only to Alice and Bob.
- The art and science of keeping messages secure is **cryptography**.

Alice ——→ Bob

Encryption and Decryption

- Alice and Bob agree on two algorithms *E* and *D*—the **encryption** and the **decryption algorithms**.
- Both E and D are known to the public in the analysis.
- Alice runs E and wants to send a message x to Bob.
- Bob operates D.
- Privacy is assured in terms of two numbers *e*, *d*, the **encryption** and **decryption keys**.
- Alice sends y = E(e, x) to Bob, who then performs D(d, y) = x to recover x.
- x is called **plaintext**, and y is called **ciphertext**.^a

^aBoth "zero" and "cipher" come from the same Arab word.

Some Requirements

- D should be an inverse of E given e and d.
- *D* and *E* must both run in (probabilistic) polynomial time.
- Eve should not be able to recover x from y without knowing d.
 - As D is public, d must be kept secret.
 - -e may or may not be a secret.

Degrees of Security

- **Perfect secrecy**: After a ciphertext is intercepted by the enemy, the a posteriori probabilities of the plaintext that this ciphertext represents are identical to the a priori probabilities of the same plaintext before the interception.
 - The probability that plaintext \mathcal{P} occurs is independent of the ciphertext \mathcal{C} being observed.
 - So knowing \mathcal{C} yields no advantage in recovering \mathcal{P} .
- Such systems are said to be **informationally secure**.
- A system is **computationally secure** if breaking it is theoretically possible but computationally infeasible.

Conditions for Perfect Secrecy $^{\rm a}$

- Consider a cryptosystem where:
 - The space of ciphertext is as large as that of keys.
 - Every plaintext has a nonzero probability of being used.
- It is perfectly secure if and only if the following hold.
 - A key is chosen with uniform distribution.
 - For each plaintext x and ciphertext y, there exists a unique key e such that E(e, x) = y.

^aShannon (1949).

The One-Time Pad^a

- 1: Alice generates a random string r as long as x;
- 2: Alice sends r to Bob over a secret channel;
- 3: Alice sends $r \oplus x$ to Bob over a public channel;
- 4: Bob receives y;
- 5: Bob recovers $x := y \oplus r$;

^aMauborgne and Vernam (1917); Shannon (1949). It was allegedly used for the hotline between Russia and U.S.

Analysis

- The one-time pad uses e = d = r.
- This is said to be a **private-key cryptosystem**.
- Knowing x and knowing r are equivalent.
- Because r is random and private, the one-time pad achieves perfect secrecy (see also p. 557).
- The random bit string must be new for each round of communication.
 - Cryptographically strong pseudorandom generators require exchanging only the seed once.
- The assumption of a private channel is problematic.

Public-Key Cryptography^a

- Suppose only d is private to Bob, whereas e is public knowledge.
- Bob generates the (e, d) pair and publishes e.
- Anybody like Alice can send E(e, x) to Bob.
- Knowing d, Bob can recover x by D(d, E(e, x)) = x.
- The assumptions are complexity-theoretic.
 - It is computationally difficult to compute d from e.
 - It is computationally difficult to compute x from y without knowing d.

^aDiffie and Hellman (1976).

Whitfield Diffie (1944–)

Martin Hellman (1945–)

Complexity Issues

- Given y and x, it is easy to verify whether E(e, x) = y.
- Hence one can always guess an x and verify.
- Cracking a public-key cryptosystem is thus in NP.
- A necessary condition for the existence of secure public-key cryptosystems is $P \neq NP$.
- But more is needed than $P \neq NP$.
- It is not sufficient that *D* is hard to compute in the worst case.
- It should be hard in "most" or "average" cases.

One-Way Functions

A function f is a **one-way function** if the following hold.^a

- 1. f is one-to-one.
- 2. For all $x \in \Sigma^*$, $|x|^{1/k} \le |f(x)| \le |x|^k$ for some k > 0.
 - f is said to be **honest**.
- 3. f can be computed in polynomial time.
- 4. f^{-1} cannot be computed in polynomial time.
 - Exhaustive search works, but it is too slow.

^aDiffie and Hellman (1976); Boppana and Lagarias (1986); Grollmann and Selman (1988); Ko (1985); Ko, Long, and Du (1986); Watanabe (1985); Young (1983).

Existence of One-Way Functions

- Even if P ≠ NP, there is no guarantee that one-way functions exist.
- No functions have been proved to be one-way.
- Is breaking glass a one-way function?

Candidates of One-Way Functions

- Modular exponentiation $f(x) = g^x \mod p$, where g is a primitive root of p.
 - Discrete logarithm is hard.^a
- The RSA^b function $f(x) = x^e \mod pq$ for an odd e relatively prime to $\phi(pq)$.

- Breaking the RSA function is hard.

^aConjectured to be $2^{n^{\epsilon}}$ for some $\epsilon > 0$ in both the worst-case sense and average sense. It is in NP in some sense (Grollmann and Selman (1988)).

^bRivest, Shamir, and Adleman (1978).

Candidates of One-Way Functions (concluded)

- Modular squaring $f(x) = x^2 \mod pq$.
 - Determining if a number with a Jacobi symbol 1 is a quadratic residue is hard—the quadratic residuacity assumption (QRA).^a

^aDue to Gauss.

The RSA Function

- Let p, q be two distinct primes.
- The RSA function is $x^e \mod pq$ for an odd e relatively prime to $\phi(pq)$.
 - By Lemma 51 (p. 406),

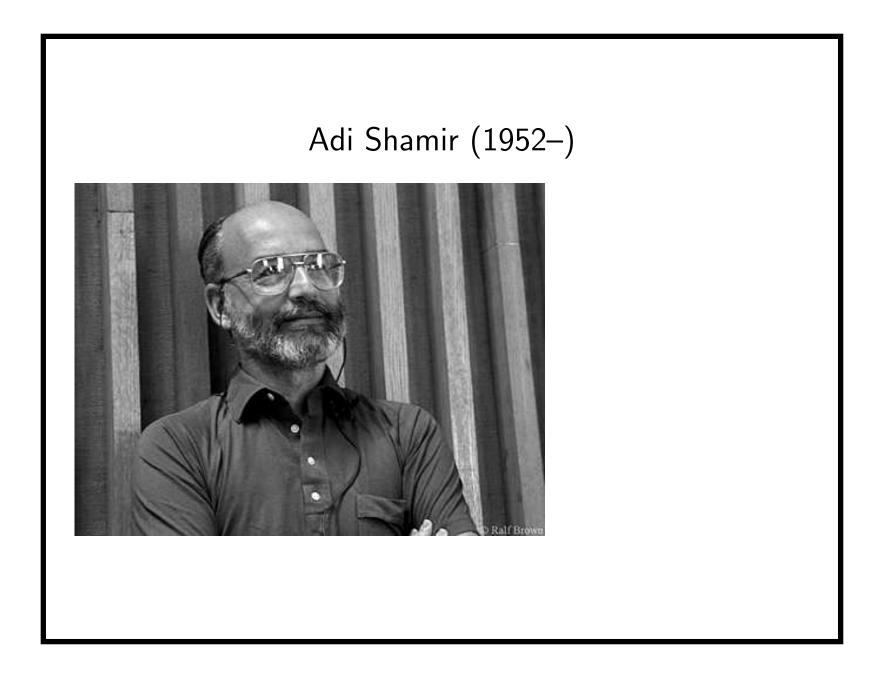
$$\phi(pq) = pq\left(1 - \frac{1}{p}\right)\left(1 - \frac{1}{q}\right) = pq - p - q + 1. \quad (8)$$

• As $gcd(e, \phi(pq)) = 1$, there is a d such that

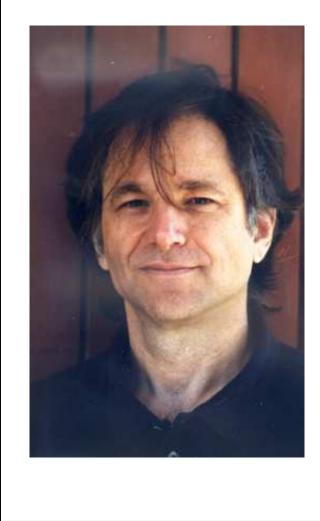
 $ed \equiv 1 \mod \phi(pq),$

which can be found by the Euclidean algorithm.

Adi Shamir, Ron Rivest, and Leonard Adleman



Leonard Adleman (1945–)



A Public-Key Cryptosystem Based on RSA

- Bob generates p and q.
- Bob publishes pq and the encryption key e, a number relatively prime to $\phi(pq)$.
 - The encryption function is $y = x^e \mod pq$.
 - Bob calculates $\phi(pq)$ by Eq. (8) (p. 568).
 - Bob then calculates d such that $ed = 1 + k\phi(pq)$ for some $k \in \mathbb{Z}$.
- The decryption function is $y^d \mod pq$.
- It works because $y^d = x^{ed} = x^{1+k\phi(pq)} = x \mod pq$ by the Fermat-Euler theorem when gcd(x, pq) = 1 (p. 414).

The "Security" of the RSA Function

- Factoring pq or calculating d from (e, pq) seems hard.
 See also p. 410.
- Breaking the last bit of RSA is as hard as breaking the RSA.^a
- Recommended RSA key sizes:^b
 - -1024 bits up to 2010.
 - 2048 bits up to 2030.
 - -3072 bits up to 2031 and beyond.

^aAlexi, Chor, Goldreich, and Schnorr (1988). ^bRSA (2003).

The "Security" of the RSA Function (concluded)

- Recall that problem A is "harder than" problem B if solving A results in solving B.
 - Factorization is "harder than" breaking the RSA.
 - Calculating Euler's phi function is "harder than" breaking the RSA.
 - Factorization is "harder than" calculating Euler's phi function (see Lemma 51 on p. 406).
 - So factorization is hardest, followed by calculating Euler's phi function, followed by breaking the RSA.
- Factorization cannot be NP-hard unless $NP = coNP.^{a}$
- So breaking the RSA is unlikely to imply P = NP. ^aBrassard (1979).

The Secret-Key Agreement Problem

- Exchanging messages securely using a private-key cryptosystem requires Alice and Bob possessing the same key (p. 559).
- How can they agree on the same secret key when the channel is insecure?
- This is called the **secret-key agreement problem**.
- It was solved by Diffie and Hellman (1976) using one-way functions.

The Diffie-Hellman Secret-Key Agreement Protocol

- 1: Alice and Bob agree on a large prime p and a primitive root g of p; {p and g are public.}
- 2: Alice chooses a large number a at random;
- 3: Alice computes $\alpha = g^a \mod p$;
- 4: Bob chooses a large number b at random;
- 5: Bob computes $\beta = g^b \mod p$;
- 6: Alice sends α to Bob, and Bob sends β to Alice;
- 7: Alice computes her key $\beta^a \mod p$;
- 8: Bob computes his key $\alpha^b \mod p$;

Analysis

• The keys computed by Alice and Bob are identical:

$$\beta^a = g^{ba} = g^{ab} = \alpha^b \bmod p.$$

- To compute the common key from p, g, α, β is known as the **Diffie-Hellman problem**.
- It is conjectured to be hard.
- If discrete logarithm is easy, then one can solve the Diffie-Hellman problem.
 - Because a and b can then be obtained by Eve.
- But the other direction is still open.

A Parallel History

- Diffie and Hellman's solution to the secret-key agreement problem led to public-key cryptography.
- At around the same time (or earlier) in Britain, the RSA public-key cryptosystem was invented first before the Diffie-Hellman secret-key agreement scheme was.
 - Ellis, Cocks, and Williamson of the Communications
 Electronics Security Group of the British Government
 Communications Head Quarters (GCHQ).

Digital Signatures $^{\rm a}$

- Alice wants to send Bob a *signed* document x.
- The signature must unmistakably identifies the sender.
- Both Alice and Bob have public and private keys

 $e_{\text{Alice}}, e_{\text{Bob}}, d_{\text{Alice}}, d_{\text{Bob}}.$

• Assume the cryptosystem satisfies the commutative property

$$E(e, D(d, x)) = D(d, E(e, x)).$$
 (9)

- As $(x^d)^e = (x^e)^d$, the RSA system satisfies it.

- Every cryptosystem guarantees D(d, E(e, x)) = x.

^aDiffie and Hellman (1976).

Digital Signatures Based on Public-Key Systems

• Alice signs x as

$$(x, D(d_{\text{Alice}}, x)).$$

• Bob receives (x, y) and verifies the signature by checking $E(e_{Alice}, y) = E(e_{Alice}, D(d_{Alice}, x)) = x$

based on Eq. (9).

- The claim of authenticity is founded on the difficulty of inverting E_{Alice} without knowing the key d_{Alice} .
- Warning: If Alice signs anything presented to her, she might inadvertently decrypt a ciphertext of hers.

${\sf Probabilistic}\ {\sf Encryption}^{\rm a}$

- A deterministic cryptosystem can be broken if the plaintext has a distribution that favors the "easy" cases.
- The ability to forge signatures on even a vanishingly small fraction of strings of some length is a security weakness if those strings were the probable ones!
- A scheme may also "leak" *partial* information.

- Parity of the plaintext, e.g.

• The first solution to the problems of skewed distribution and partial information was based on the QRA.

^aGoldwasser and Micali (1982).

Shafi Goldwasser (1958–)

Silvio Micali (1954–)

The Setup

- Bob publishes n = pq, a product of two distinct primes, and a quadratic nonresidue y with Jacobi symbol 1.
- Bob keeps secret the factorization of n.
- Alice wants to send bit string $b_1 b_2 \cdots b_k$ to Bob.
- Alice encrypts the bits by choosing a random quadratic residue modulo n if b_i is 1 and a random quadratic nonresidue (with Jacobi symbol 1) otherwise.
- A sequence of residues and nonresidues are sent.
- Knowing the factorization of n, Bob can efficiently test quadratic residuacity and thus read the message.

A Useful Lemma

Lemma 75 Let n = pq be a product of two distinct primes. Then a number $y \in Z_n^*$ is a quadratic residue modulo n if and only if (y | p) = (y | q) = 1.

- The "only if" part:
 - Let x be a solution to $x^2 = y \mod pq$.
 - Then $x^2 = y \mod p$ and $x^2 = y \mod q$ also hold.
 - Hence y is a quadratic modulo p and a quadratic residue modulo q.

The Proof (concluded)

- The "if" part:
 - Let $a_1^2 = y \mod p$ and $a_2^2 = y \mod q$.

– Solve

$$x = a_1 \mod p,$$
$$x = a_2 \mod q,$$

for x with the Chinese remainder theorem.

- As $x^2 = y \mod p$, $x^2 = y \mod q$, and gcd(p,q) = 1, we must have $x^2 = y \mod pq$.

The Jacobi Symbol and Quadratic Residuacity Test

- The Legendre symbol can be used as a test for quadratic residuacity by Lemma 63 (p. 481).
- Lemma 75 (p. 586) says this is not the case with the Jacobi symbol in general.
- Suppose n = pq is a product of two distinct primes.
- A number $y \in Z_n^*$ with Jacobi symbol $(y \mid pq) = 1$ may be a quadratic nonresidue modulo n when

$$(y \,|\, p) = (y \,|\, q) = -1,$$

because (y | pq) = (y | p)(y | q)

The Protocol for Alice

- 1: for i = 1, 2, ..., k do
- 2: Pick $r \in Z_n^*$ randomly;

3: if
$$b_i = 1$$
 then

4: Send
$$r^2 \mod n$$
; {Jacobi symbol is 1.}

5: **else**

6: Send
$$r^2 y \mod n$$
; {Jacobi symbol is still 1.}

- 7: end if
- 8: end for

The Protocol for Bob

1: for
$$i = 1, 2, ..., k$$
 do

2: Receive
$$r$$
;

3: **if**
$$(r | p) = 1$$
 and $(r | q) = 1$ **then**

$$4: \qquad b_i := 1;$$

5: **else**

$$6: \qquad b_i := 0;$$

$$7:$$
 end if

Semantic Security

- This encryption scheme is probabilistic.
- There are a large number of different encryptions of a given message.
- One is chosen at random by the sender to represent the message.
- This scheme is both polynomially secure and **semantically secure**.

What Is a Proof?

- A proof convinces a party of a certain claim.
 - " $x^n + y^n \neq z^n$ for all $x, y, z \in \mathbb{Z}^+$ and n > 2."
 - "Graph G is Hamiltonian."
 - " $x^p = x \mod p$ for prime p and p $\not| x$."
- In mathematics, a proof is a fixed sequence of theorems.
 - Think of a written examination.
- We will extend a proof to cover a proof *process* by which the validity of the assertion is established.
 - Think of a job interview or an oral examination.

Prover and Verifier

- There are two parties to a proof.
 - The prover (Peggy).
 - The verifier (Victor).
- Given an assertion, the prover's goal is to convince the verifier of its validity (**completeness**).
- The verifier's objective is to accept only correct assertions (**soundness**).
- The verifier usually has an easier job than the prover.
- The setup is very much like the Turing test.^a

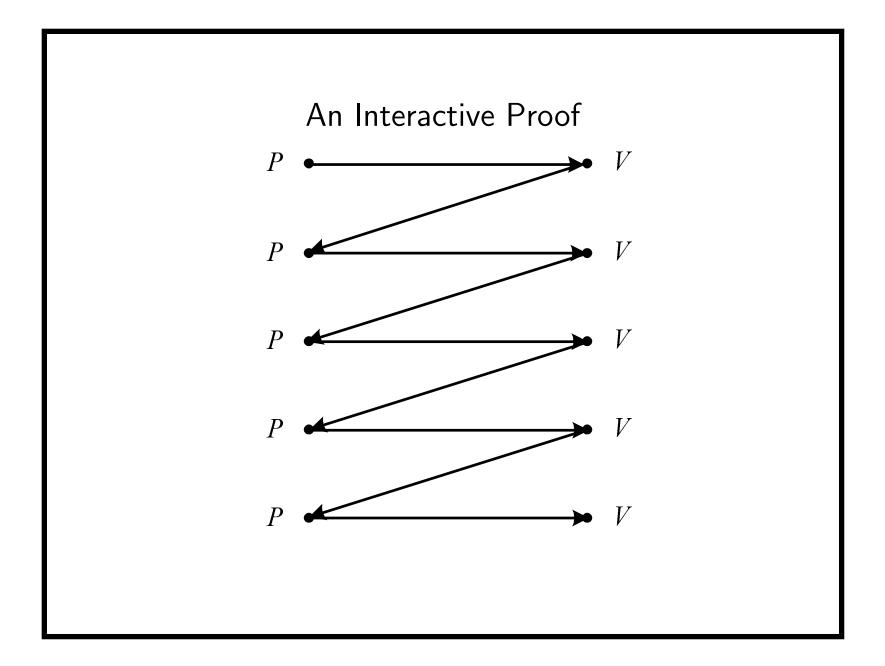
^aTuring (1950).

Interactive Proof Systems

- An **interactive proof** for a language *L* is a sequence of questions and answers between the two parties.
- At the end of the interaction, the verifier decides based on the knowledge he acquired in the proof process whether the claim is true or false.
- The verifier must be a probabilistic polynomial-time algorithm.
- The prover runs an exponential-time algorithm.
 - If the prover is not more powerful than the verifier, no interaction is needed.

Interactive Proof Systems (concluded)

- The system decides L if the following two conditions hold for any common input x.
 - If $x \in L$, then the probability that x is accepted by the verifier is at least $1 - 2^{-|x|}$.
 - If $x \notin L$, then the probability that x is accepted by the verifier with *any* prover replacing the original prover is at most $2^{-|x|}$.
- Neither the number of rounds nor the lengths of the messages can be more than a polynomial of |x|.



$\mathsf{I}\mathsf{P}^{\mathrm{a}}$

- **IP** is the class of all languages decided by an interactive proof system.
- When x ∈ L, the completeness condition can be modified to require that the verifier accepts with certainty without affecting IP.^b
- Similar things cannot be said of the soundness condition when $x \notin L$.
- Verifier's coin flips can be public.^c

^aGoldwasser, Micali, and Rackoff (1985). ^bGoldreich, Mansour, and Sipser (1987). ^cGoldwasser and Sipser (1989). The Relations of IP with Other Classes

• NP \subseteq IP.

– IP becomes NP when the verifier is deterministic.

- BPP \subseteq IP.
 - IP becomes BPP when the verifier ignores the prover's messages.
- IP actually coincides with PSPACE.^a

^aShamir (1990).