Theory of Computation

Homework 3

Due: 2008/11/25
Problem 1. Define MAJORITY-3-COLORING to be the problem of asking whether the nodes of a given undirected graph $G=(V, E)$ can be colored with 0,1 or 2 such that the following two conditions hold:

1. No two adjacent nodes have the same color.
2. At least $|V| / 2$ nodes have the color 2 .

Find a logarithmic-space reduction from 3-COLORING to MAJORITY-3COLORING or prove that such reductions cannot exist.

Proof. We show a logarithmic-space reduction from 3-COLORING to MAJORITY-3-COLORING. Given an undirected graph $G=(V, E)$, the reduction adds $|V|+1$ isolated nodes to G and outputs the resulting graph G^{\prime}.

Suppose that $G \in 3$-COLORING. Then the nodes of G can be colored with 0,1 or 2 such that no two adjacent nodes have the same color. By coloring the rest of the $|V|+1$ nodes with the color 2, we see that $G^{\prime} \in$ MAJORITY-3-COLORING. Conversely, $G^{\prime} \in$ MAJORITY-3-COLORING clearly implies $G \in 3$-COLORING.

Problem 2. Let p be an odd prime and $\phi(\cdot)$ be Euler's function as in the slides. Prove or disprove that

$$
\frac{|\{2 i \bmod p \mid 1 \leq i \leq p\}|}{p}>\frac{\phi(3 p)}{3 p-1}
$$

Proof. We have

$$
\{2 i \bmod p \mid 1 \leq i \leq p\}=\{0, \ldots, p-1\}
$$

because $2 i \not \equiv 2 j \bmod p$ holds for all distinct $1 \leq i, j \leq p$. As 3 is not relatively prime to $3 p, \phi(3 p)<3 p-1$. Therefore,

$$
\frac{|\{2 i \bmod p \mid 1 \leq i \leq p\}|}{p}=1>\frac{\phi(3 p)}{3 p-1} .
$$

