Theory of Computation

Homework 2

Due: 2008/11/04
Problem 1. Let $L \subseteq\{0,1\}^{*}$ belong to $\operatorname{TIME}\left(2^{\left(n^{10}\right)}\right)$ and $L^{\prime} \stackrel{\text { def }}{=}\left\{x 0^{|x|^{100}} \mid\right.$ $x \in L\}$ where $x 0^{|x|^{100}}$ denotes the concatenation of x and an $|x|^{100}$ number of 0 's. Show that $L^{\prime} \in \operatorname{TIME}\left(2^{n}\right)$.

Problem 2. Let M be a nondeterministic polynomial-time Turing machine with alphabet set Σ. For each $x \in(\Sigma \backslash\{\sqcup\})^{*}$, denote by $C(M, x)$ the set of configurations that can be yielded in any number of steps from the initial configuration of M on x. Suppose that A is a deterministic polynomial-time Turing machine that, given any $x \in(\Sigma \backslash\{\sqcup\})^{*}$, outputs a set $S(x)$ with $C(M, x) \subseteq S(x)$. Show that $L(M) \in \mathrm{P}$.

