
Theory of Computation

Solutions to Homework 1

Problem 1. Briefly describe a Turing machine that accepts a string x ∈
{0, 1}∗ if and only if x contains at least one 0. You do not need to specify
the exact states and state transitions of the Turing machine. Just sketch the
idea.

Solution. The Turing machine scans the input from left to right and accepts
once it reads a 0.

Problem 2. Let M be a one-string Turing machine and denote by T (M, ε)
the number of configurations that M goes through on the empty input ε.
Denote by (q(n), w(n), u(n)) the n-th configuration of M on ε, 1 ≤ n ≤ T (M, ε),
where we adhere to the representation of configurations in the slides. For
1 ≤ n ≤ T (M, ε) and i ≥ 1, write A(n)[i] for the i-th symbol, counting
from left to right, of the concatenation of w(n), u(n) and an infinite string of
ts. That is, A(n)[i] is the i-th symbol of M ’s string at the n-th configuration
starting from the input ε. Briefly argue why A(n)[k+1] is uniquely determined
given q(n−1), A(n−1)[k], A(n−1)[k + 1], A(n−1)[k + 2] and the length of w(n−1),
for each 2 ≤ n ≤ T (M, ε) and k ≥ 1.

Proof. Clearly, A(n)[k + 1] is uniquely determined given the (n − 1)-th con-
figuration of M on ε. As a Turing machine moves its cursor at most once in
each step, A(n)[k + 1] must be uniquely determined given q(n−1), A(n−1)[k],
A(n−1)[k + 1], A(n−1)[k + 2] and the length of w(n−1).

Comment 1. A similar observation leads us somewhat close to proving the
Cook-Levin theorem. In this problem, however, A(n)[k+1] can also be uniquely
determined given q(n−1), A(n−1)[k + 1] and the length of w(n−1) because a
Turing machine alters only the character under the cursor at any time step.


