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Problem 1 (20 points). Show that if SAT ∈ P, then FSAT has a polynomial-

time algorithm. (Hint: You may want to use the self-reducibility of SAT.)

Proof. Assume SAT ∈ P. We describe below how to find a truth assignment

to an input Boolean expression φ in time polynomial in |φ|. If φ /∈ SAT

then it does not have a satisfying truth assignment. So we assume otherwise.

Denote the variables of φ by x1, . . . , xn. Let t be the empty truth assignment

to x1, . . . , xn. For i = 1 up to n, we expand t to include the assignment

xi = true if φ[ t∪{xi = true} ] ∈ SAT and xi = false otherwise. Clearly, after

n iterations, the final t will be a satisfying assignment of φ. It is also clear

that the above procedure runs in time polynomial in |φ|.

Problem 2 (20 points). Let U = {u1, . . . , un}, V = {v1, . . . , vn} and G =

(U, V,E) be a bipartite graph with a perfect matching. Consider the n × n

matrix AG(x11, . . . , xnn) whose (i, j)-th entry is a variable xij if (ui, vj) ∈ E

and zero otherwise. Does there exist an integer assignment i11, . . . , inn to

x11, . . . , xnn such that det(AG(i11, . . . , inn)) 6= 0?

Proof. Let {(ui, vπ(i)) | 1 ≤ i ≤ n} be a perfect matching where π is a

permutation on {1, . . . , n}. Then the monomial
∏n

i=1 xi π(i) has coefficient

1 or −1 in det(AG(x11, . . . , xnn)) and no other monomials contain all those

variables xi π(i) for 1 ≤ i ≤ n. Hence, by setting xi π(i) to 1 for 1 ≤ i ≤ n and

all other variables to zero, the determinant will be ±1.

Problem 3 (20 points). For c ∈ [ 0, 1 ], let P (c) be the following statement:

There exists a randomized polynomial-time algorithm outputting

“Hamiltonian” with probability at least c when its input is a

Hamiltonian graph, and “Not Hamiltonian” with probability 1

otherwise.



Show that P (3/5) implies P (3/4).

Proof. Assume the truth of P (3/5). Consider the algorithm M which de-

termines whether a given graph G is Hamiltonian by repeating the algo-

rithm witnessing the truth of P (3/5) for 100 times using independent ran-

dom coin tosses and outputting “Hamiltonian” (resp., “Not Hamiltonian”)

if any (resp., none) of the 100 executions outputs “Hamiltonian.” Given any

Hamiltonian graph G, the probability that M outputs “Hamiltonian” is at

least 1− (1− 3/5)100 > 3/4.

Problem 4 (20 points). Let M be a polynomial-time Turing machine that,

given as input an odd prime p, a primitive root g of p and −gx mod p for an

unknown x, finds x mod (p− 1). Show how to break the discrete logarithm

in polynomial time. That is, given an odd prime p, a primitive root g of p

and gx mod p for an unknown x, show how to find x mod (p − 1) in time

polynomial in the length of the inputs. (Hint: You may want to consider

g(p−1)/2 mod p.)

Proof. Compute −gx mod p and feed M with p, g and −gx mod p to obtain

x mod p− 1.

Problem 5 (20 points). Does PRIMES belong to IP? Briefly justify your

answer.

Proof. We have BPP ⊆ IP because a verifier can neglect all messages of the

prover. We have also shown PRIMES ∈ BPP in class. Therefore, PRIMES ∈
IP.

Problem 6 (20 points). Prove that INDEPENDENT SET is NP-hard. You

may assume the NP-completeness of CLIQUE or any other problem shown

to be NP-complete in class.

Proof. We describe a reduction from CLIQUE to INDEPENDENT SET.

Given a graph G and a number k as input, the reduction outputs the com-

plement of G and k. Clearly, G has a clique of size k if and only if its

complement has an independent set of size k. It is also clear that the reduc-

tion runs in logarithmic space.


