Theory of Computation

Final Examination on June 19, 2008
 Spring Semester, 2008

Problem 1 (20 points). Show that if $S A T \in P$, then FSAT has a polynomialtime algorithm. (Hint: You may want to use the self-reducibility of SAT.)

Problem 2 (20 points). Let $U=\left\{u_{1}, \ldots, u_{n}\right\}, V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $G=$ (U, V, E) be a bipartite graph with a perfect matching. Consider the $n \times n$ matrix $A^{G}\left(x_{11}, \ldots, x_{n n}\right)$ whose (i, j)-th entry is a variable $x_{i j}$ if $\left(u_{i}, v_{j}\right) \in E$ and zero otherwise. Does there exist an integer assignment $i_{11}, \ldots, i_{n n}$ to $x_{11}, \ldots, x_{n n}$ such that $\operatorname{det}\left(A^{G}\left(i_{11}, \ldots, i_{n n}\right)\right) \neq 0$?

Problem 3 (20 points). For $c \in[0,1]$, let $P(c)$ be the following statement:
There exists a randomized polynomial-time algorithm outputting "Hamiltonian" with probability at least c when its input is a Hamiltonian graph, and "Not Hamiltonian" with probability 1 otherwise.

Show that $P(3 / 5)$ implies $P(3 / 4)$.
Problem 4 (20 points). Let M be a polynomial-time Turing machine that, given as input an odd prime p, a primitive root g of p and $-g^{x} \bmod p$ for an unknown x, finds x mod $(p-1)$. Show how to break the discrete logarithm in polynomial time. That is, given an odd prime p, a primitive root g of p and $g^{x} \bmod p$ for an unknown x, show how to find $x \bmod (p-1)$ in time polynomial in the length of the inputs. (Hint: You may want to consider $g^{(p-1) / 2} \bmod p$.)

Problem 5 (20 points). Does PRIMES belong to IP? Briefly justify your answer.

Problem 6 (20 points). Prove that INDEPENDENT SET is NP-hard. You may assume the NP-completeness of CLIQUE or any other problem shown to be NP-complete in class.

