Theory of Computation

Final Examination on June 19, 2008 Spring Semester, 2008

Problem 1 (20 points). Show that if $SAT \in P$, then FSAT has a polynomialtime algorithm. (Hint: You may want to use the self-reducibility of SAT.)

Problem 2 (20 points). Let $U = \{u_1, \ldots, u_n\}$, $V = \{v_1, \ldots, v_n\}$ and G = (U, V, E) be a bipartite graph with a perfect matching. Consider the $n \times n$ matrix $A^G(x_{11}, \ldots, x_{nn})$ whose (i, j)-th entry is a variable x_{ij} if $(u_i, v_j) \in E$ and zero otherwise. Does there exist an integer assignment i_{11}, \ldots, i_{nn} to x_{11}, \ldots, x_{nn} such that $\det(A^G(i_{11}, \ldots, i_{nn})) \neq 0$?

Problem 3 (20 points). For $c \in [0, 1]$, let P(c) be the following statement:

There exists a randomized polynomial-time algorithm outputting "Hamiltonian" with probability at least c when its input is a Hamiltonian graph, and "Not Hamiltonian" with probability 1 otherwise.

Show that P(3/5) implies P(3/4).

Problem 4 (20 points). Let M be a polynomial-time Turing machine that, given as input an odd prime p, a primitive root g of p and $-g^x \mod p$ for an unknown x, finds $x \mod (p-1)$. Show how to break the discrete logarithm in polynomial time. That is, given an odd prime p, a primitive root g of pand $g^x \mod p$ for an unknown x, show how to find $x \mod (p-1)$ in time polynomial in the length of the inputs. (Hint: You may want to consider $g^{(p-1)/2} \mod p$.)

Problem 5 (20 points). Does PRIMES belong to IP? Briefly justify your answer.

Problem 6 (20 points). Prove that INDEPENDENT SET is NP-hard. You may assume the NP-completeness of CLIQUE or any other problem shown to be NP-complete in class.