Theory of Computation

Solutions to Homework 5

Problem 1. Let p, q be two distinct primes. Recall that the RSA function, shown on pages $551-558$ in the slides, is $x^{e} \bmod p q$ for an odd e relatively prime to $\phi(p q)$. Show that the RSA function is not secure when q is restricted to be $p+2$. That is, given the binary representations of $p q, e$ and $x^{e} \bmod p q$ as inputs, show how to compute x mod $p q$ in time polynomial in the input length, provided the following conditions hold:

1. $q=p+2$.
2. p and q are distinct primes.
3. e is odd and relatively prime to $\phi(p q)$.

Problem 2. Show that if SAT has no polynomial circuits, then coNP \neq BPP. (Hint: Adleman's theorem states that all languages in BPP have polynomial circuits.)

