Theory of Computation

Solutions to Homework 3

Problem 1. Show that if NP \neq coNP, then NP \neq NL. (Hint: The Immerman-Szelepscényi theorem implies NL = coNL.)

Proof. If NP = NL, then coNP = coNL = NL by the Immerman-Szelepscényi theorem. Hence coNP = NL = NP, a contradiction.

Problem 2. Let k be a positive integer which is not a multiple of 13. Show that if $k^5 = 1 \mod 13$, then $k = 1 \mod 13$. (Hint: Fermat's little theorem implies $k^{12} = 1 \mod 13$.)

Proof. By applying Euclid's algorithm, $1 = -2 \cdot 12 + 5 \cdot 5$. Hence $k \equiv k^{-2 \cdot 12 + 5 \cdot 5}$ mod 13. Since $k^{12} \equiv 1 \mod 13$ by Fermat's little theorem and $k^5 \equiv 1 \mod 13$, $k \equiv 1 \mod 13$.