Theory of Computation

Solutions to Homework 3_{λ}

Problem 1. Show that if NP \neq coNP, then NP \neq NL. (Hint: The Immerman-Szelepscényi theorem implies $\mathrm{NL}=$ coNL.)

Proof. If NP $=$ NL, then coNP $=$ coNL $=$ NL by the Immerman-Szelepscényi theorem. Hence coNP $=\mathrm{NL}=\mathrm{NP}$, a contradiction.

Problem 2. Let k be a positive integer which is not a multiple of 13 . Show that if $k^{5}=1 \bmod 13$, then $k=1 \bmod 13$. (Hint: Fermat's little theorem implies $k^{12}=1 \bmod 13$.)

Proof. By applying Euclid's algorithm, $1=-2 \cdot 12+5 \cdot 5$. Hence $k \equiv k^{-2 \cdot 12+5 \cdot 5}$ $\bmod 13$. Since $k^{12} \equiv 1 \bmod 13$ by Fermat's little theorem and $k^{5} \equiv 1 \bmod$ $13, k \equiv 1 \bmod 13$.

