What Is a Proof?

- A proof convinces a party of a certain claim.
- "Is $x^{n}+y^{n} \neq z^{n}$ for all $x, y, z \in \mathbb{Z}^{+}$and $n>2$?"
- "Is graph G Hamiltonian?"
- "Is $x^{p}=x \bmod p$ for prime p and $p \nmid x$?"
- In mathematics, a proof is a fixed sequence of theorems.
- Think of a written examination.
- We will extend a proof to cover a proof process by which the validity of the assertion is established.
- Think of a job interview or an oral examination.

Prover and Verifier

- There are two parties to a proof.
- The prover (Peggy).
- The verifier (Victor).
- Given an assertion, the prover's goal is to convince the verifier of its validity (completeness).
- The verifier's objective is to accept only correct assertions (soundness).
- The verifier usually has an easier job than the prover.
- The setup is very much like the Turing test. ${ }^{\text {a }}$
${ }^{\text {a }}$ Turing (1950).

Interactive Proof Systems

- An interactive proof for a language L is a sequence of questions and answers between the two parties.
- At the end of the interaction, the verifier decides based on the knowledge he acquired in the proof process whether the claim is true or false.
- The verifier must be a probabilistic polynomial-time algorithm.
- The prover runs an exponential-time algorithm.
- If the prover is not more powerful than the verifier, no interaction is needed.

Interactive Proof Systems (concluded)

- The system decides L if the following two conditions hold for any common input x.
- If $x \in L$, then the probability that x is accepted by the verifier is at least $1-2^{-|x|}$.
- If $x \notin L$, then the probability that x is accepted by the verifier with any prover replacing the original prover is at most $2^{-|x|}$.
- Neither the number of rounds nor the lengths of the messages can be more than a polynomial of $|x|$.

IP ${ }^{\text {a }}$

- IP is the class of all languages decided by an interactive proof system.
- When $x \in L$, the completeness condition can be modified to require that the verifier accepts with certainty without affecting IP. ${ }^{\text {b }}$
- Similar things cannot be said of the soundness condition when $x \notin L$.
- Verifier's coin flips can be public. ${ }^{\text {c }}$

[^0]
The Relations of IP with Other Classes

- $\mathrm{NP} \subseteq \mathrm{IP}$.
- IP becomes NP when the verifier is deterministic.
- $\mathrm{BPP} \subseteq \mathrm{IP}$.
- IP becomes BPP when the verifier ignores the prover's messages.
- IP actually coincides with PSPACE. ${ }^{\text {a }}$
${ }^{\text {a }}$ Shamir (1990).

Graph Isomorphism

- $V_{1}=V_{2}=\{1,2, \ldots, n\}$.
- Graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there exists a permutation π on $\{1,2, \ldots, n\}$ so that $(u, v) \in E_{1} \Leftrightarrow(\pi(u), \pi(v)) \in E_{2}$.
- The task is to answer if $G_{1} \cong G_{2}$ (isomorphic).
- No known polynomial-time algorithms.
- The problem is in NP (hence IP).
- But it is not likely to be NP-complete. ${ }^{\text {a }}$

[^1]
GRAPH NONISOMORPHISM

- $V_{1}=V_{2}=\{1,2, \ldots, n\}$.
- Graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are nonisomorphic if there exist no permutations π on $\{1,2, \ldots, n\}$ so that $(u, v) \in E_{1} \Leftrightarrow(\pi(u), \pi(v)) \in E_{2}$.
- The task is to answer if $G_{1} \not \neq G_{2}$ (nonisomorphic).
- Again, no known polynomial-time algorithms.
- It is in coNP, but how about NP or BPP?
- It is not likely to be coNP-complete.
- Surprisingly, GRAPH NONISOMORPHISM \in IP. ${ }^{\text {a }}$
${ }^{\text {a }}$ Goldreich, Micali, and Wigderson (1986).

A 2-Round Algorithm

1: Victor selects a random $i \in\{1,2\}$;
2: Victor selects a random permutation π on $\{1,2, \ldots, n\}$;
3: Victor applies π on graph G_{i} to obtain graph H;
4: Victor sends $\left(G_{1}, H\right)$ to Peggy;
if $G_{1} \cong H$ then
6: Peggy sends $j=1$ to Victor;
7: else
8: Peggy sends $j=2$ to Victor;
9: end if
10: if $j=i$ then
11: Victor accepts;
12: else
13: Victor rejects;
14: end if

Analysis

- Victor runs in probabilistic polynomial time.
- Suppose $G_{1} \neq G_{2}$.
- Peggy is able to tell which G_{i} is isomorphic to H.
- So Victor always accepts.
- Suppose $G_{1} \cong G_{2}$.
- No matter which i is picked by Victor, Peggy or any prover sees 2 identical graphs.
- Peggy or any prover with exponential power has only probability one half of guessing i correctly.
- So Victor erroneously accepts with probability 1/2.
- Repeat the algorithm to obtain the desired probabilities.

Knowledge in Proofs

- Suppose I know a satisfying assignment to a satisfiable boolean expression.
- I can convince Alice of this by giving her the assignment.
- But then I give her more knowledge than necessary.
- Alice can claim that she found the assignment!
- Login authentication faces essentially the same issue.
- See
www.wired.com/wired/archive/1.05/atm_pr.html for a famous ATM fraud in the U.S.

Knowledge in Proofs (concluded)

- Digital signatures authenticate documents but not individuals.
- They hence do not solve the problem.
- Suppose I always give Alice random bits.
- Alice extracts no knowledge from me by any measure, but I prove nothing.
- Question 1: Can we design a protocol to convince Alice of (the knowledge of) a secret without revealing anything extra?
- Question 2: How to define this idea rigorously?

Zero Knowledge Proofs ${ }^{\text {a }}$

An interactive proof protocol (P, V) for language L has the perfect zero-knowledge property if:

- For every verifier V^{\prime}, there is an algorithm M with expected polynomial running time.
- M on any input $x \in L$ generates the same probability distribution as the one that can be observed on the communication channel of $\left(P, V^{\prime}\right)$ on input x.

[^2]
Comments

- Zero knowledge is a property of the prover.
- It is the robustness of the prover against attempts of the verifier to extract knowledge via interaction.
- The verifier may deviate arbitrarily (but in polynomial time) from the predetermined program.
- A verifier cannot use the transcript of the interaction to convince a third-party of the validity of the claim.
- The proof is hence not transferable.

Comments (continued)

- Whatever a verifier can "learn" from the specified prover P via the communication channel could as well be computed from the verifier alone.
- The verifier does not learn anything except " $x \in L$. ."
- Zero-knowledge proofs yield no knowledge in the sense that they can be constructed by the verifier who believes the statement, and yet these proofs do convince him.

Comments (continued)

- The "paradox" is resolved by noting that it is not the transcript of the conversation that convinces the verifier.
- But the fact that this conversation was held "on line."
- There is no zero-knowledge requirement when $x \notin L$.
- Computational zero-knowledge proofs are based on complexity assumptions.
- M only needs to generate a distribution that is computationally indistinguishable from the verifier's view of the interaction.

Comments (concluded)

- It is known that if one-way functions exist, then zero-knowledge proofs exist for every problem in NP. ${ }^{\text {a }}$
- The verifier can be restricted to the honest one (i.e., it follows the protocol). ${ }^{\text {b }}$
- The coins can be public. ${ }^{\text {c }}$

[^3]
Are You Convinced?

- A newspaper commercial for hair-growing products for men.
- A (for all practical purposes) bald man has a full head of hair after 3 months.
- A TV commercial for weight-loss products.
- A (by any reasonable measure) overweight woman loses 10 kilograms in 10 weeks.

Quadratic Residuacity

- Let n be a product of two distinct primes.
- Assume extracting the square root of a quadratic residue modulo n is hard without knowing the factors.
- We next present a zero-knowledge proof for x being a quadratic residue.

Zero-Knowledge Proof of Quadratic Residuacity

1: for $m=1,2, \ldots, \log _{2} n$ do
2: \quad Peggy chooses a random $v \in Z_{n}^{*}$ and sends $y=v^{2} \bmod n$ to Victor;
3: Victor chooses a random bit i and sends it to Peggy;
4: Peggy sends $z=u^{i} v \bmod n$, where u is a square root of $x ;\left\{u^{2} \equiv x \bmod n\right.$. $\}$
5: \quad Victor checks if $z^{2} \equiv x^{i} y \bmod n$;
6: end for
7: Victor accepts x if Line 5 is confirmed every time;

Analysis

- Suppose x is a quadratic nonresidue.
- Peggy can answer only one of the two possible challenges.
* Reason: a is a quadratic residue if and only if $x a$ is a quadratic nonresidue.
- So Peggy will be caught in any given round with probability one half.

Analysis (continued)

- Suppose x is a quadratic residue.
- Peggy can answer all challenges.
- So Victor will accept x.
- How about the claim of zero knowledge?
- The transcript between Peggy and Victor when x is a quadratic residue can be generated without Peggy!
- So interaction with Peggy is useless.
- Here is how.

Analysis (continued)

- Suppose x is a quadratic residue. ${ }^{\text {a }}$
- In each round of interaction with Peggy, the transcript is a triplet (y, i, z).
- We present an efficient Bob that generates (y, i, z) with the same probability without accessing Peggy.

[^4]
Analysis (concluded)

1: Bob chooses a random $z \in Z_{n}^{*}$;
2: Bob chooses a random bit i;
3: Bob calculates $y=z^{2} x^{-i} \bmod n$;
4: Bob writes (y, i, z) into the transcript;

Comments

- Assume x is a quadratic residue.
- In both cases, for $(y, i, z), y$ is a random quadratic residue, i is a random bit, and z is a random number.
- Bob cheats because (y, i, z) is not generated in the same order as in the original transcript.
- Bob picks Victor's challenge first.
- Bob then picks Peggy's answer.
- Bob finally patches the transcript.

Comments (concluded)

- So it is not the transcript that convinces Victor, but that conversation with Peggy is held "on line."
- The same holds even if the transcript was generated by a cheating Victor's interaction with (honest) Peggy.
- But we skip the details.

A Useful Corollary

Corollary 76 Let $n=p q$ be a product of two distinct primes. Then $x y \in Z_{n}^{*}$ is a quadratic residue modulo n if and only if x and y are both quadratic residues or quadratic nonresidues modulo n.

- By Lemma 75 (p. 569), $x y$ is a quadratic residue if and only if $(x y \mid p)=(x y \mid q)=1$.
- This holds if and only if $(x \mid p)(y \mid p)=(x \mid q)(y \mid q)=1$.

The Proof (concluded)

- Now,

$$
(x \mid p)(y \mid p)=(x \mid q)(y \mid q)=1
$$

if and only if

$$
(x \mid p)(x \mid q)=(y \mid p)(y \mid q)=1
$$

because Legendre symbols are ± 1.

- But the above holds if and only if x and y are both quadratic residues or quadratic nonresidues modulo n, again by Lemma 75.

Does the Following Work, Too? ${ }^{\text {a }}$

1: for $m=1,2, \ldots, \log _{2} n$ do
2: \quad Peggy chooses a random $v \in Z_{n}^{*}$ and sends $y=v^{2} \bmod n$ to Victor;
3: \quad Peggy sends $z=u v \bmod n$, where u is a square root of $x ;\left\{u^{2} \equiv x \bmod n.\right\}$
4: \quad Victor checks if $z^{2} \equiv x y \bmod n$;
5: end for
6: Victor accepts x if Line 4 is confirmed every time;
${ }^{\text {a }}$ Contributed by Mr. Chih-Duo Hong (R95922079) on December 13, 2006. It is like choosing $i=1$ in the original protocol.

Does the Following Work, Too? (concluded)

- Suppose x is a quadratic nonresidue.
- But Peggy can mislead Victor.
- Peggy first chooses a quadratic nonresidue y.
- She can solve $z^{2}=x y \bmod n$ (see Corollary 76 on p. 601).
- Finally, she sends y and z to Victor.
- This pair will satisfy $z^{2} \equiv x y \bmod n$ by construction.
- The protocol is hence not even an IP protocol!

Zero-Knowledge Proof of 3 Colorability ${ }^{\text {a }}$

1: for $i=1,2, \ldots,|E|^{2}$ do
2: \quad Peggy chooses a random permutation π of the 3 -coloring ϕ;
3: Peggy samples an encryption scheme randomly and sends $\pi(\phi(1)), \pi(\phi(2)), \ldots, \pi(\phi(|V|))$ encrypted to Victor;
4: Victor chooses at random an edge $e \in E$ and sends it to Peggy for the coloring of the endpoints of e;
5: \quad if $e=(u, v) \in E$ then
6: Peggy reveals the coloring of u and v and "proves" that they correspond to their encryption;
7: else
8: Peggy stops;
9: end if

[^5]10: if the "proof" provided in Line 6 is not valid then
11: Victor rejects and stops;
12: end if
13: \quad if $\pi(\phi(u))=\pi(\phi(v))$ or $\pi(\phi(u)), \pi(\phi(v)) \notin\{1,2,3\}$ then
14: Victor rejects and stops;
15: end if
16: end for
17: Victor accepts;

Analysis

- If the graph is 3 -colorable and both Peggy and Victor follow the protocol, then Victor always accepts.
- If the graph is not 3 -colorable and Victor follows the protocol, then however Peggy plays, Victor will accept with probability $\leq\left(1-m^{-1}\right)^{m^{2}} \leq e^{-m}$, where $m=|E|$.
- Thus the protocol is valid.
- This protocol yields no knowledge to Victor as all he gets is a bunch of random pairs.
- The proof that the protocol is zero-knowledge to any verifier is intricate.

Comments

- Each $\pi(\phi(i))$ is encrypted by a different cryptosystem. ${ }^{\text {a }}$
- Otherwise, all the colors will be revealed in Step 6.
- Each edge e must be picked randomly. ${ }^{\text {b }}$
- Otherwise, Peggy will know Victor's game plan and plot accordingly.

[^6]
[^0]: ${ }^{\text {a }}$ Goldwasser, Micali, and Rackoff (1985).
 ${ }^{\mathrm{b}}$ Goldreich, Mansour, and Sipser (1987).
 ${ }^{\text {c }}$ Goldwasser and Sipser (1989).

[^1]: aschöning (1987).

[^2]: ${ }^{\text {a }}$ Goldwasser, Micali, and Rackoff (1985).

[^3]: ${ }^{\text {a }}$ Goldreich, Micali, and Wigderson (1986).
 ${ }^{\text {b }}$ Vadhan (2006).
 ${ }^{\mathrm{c}}$ Vadhan (2006).

[^4]: ${ }^{\text {a }}$ By definition, we do not need to consider the other case.

[^5]: ${ }^{\text {a }}$ Goldreich, Micali, and Wigderson (1986).

[^6]: ${ }^{\text {a }}$ Contributed by Ms. Yui-Huei Chang (R96922060) on May 22, 2008
 ${ }^{\mathrm{b}}$ Contributed by Ms. Chang-Rong Hung (R96922028) on May 22, 2008

