
A Patch

• Despite the simplicity of a circuit, the previous
discussions imply the following:

– Circuits are not a realistic model of computation.

– Polynomial circuits are not a plausible notion of
efficient computation.

• What gives?

• The effective and efficient constructibility of

C0, C1, . . . .

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 523



Uniformity

• A family (C0, C1, . . .) of circuits is uniform if there is a
log n-space bounded TM which on input 1n outputs Cn.

– Circuits now cannot accept undecidable languages
(why?).

– The circuit family on p. 522 is not constructible by a
single Turing machine (algorithm).

• A language has uniformly polynomial circuits if
there is a uniform family of polynomial circuits that
decide it.
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Uniformly Polynomial Circuits and P

Theorem 73 L ∈ P if and only if L has uniformly
polynomial circuits.

• One direction was proved in Proposition 72 (p. 521).

• Now suppose L has uniformly polynomial circuits.

• Decide x ∈ L in polynomial time as follows:

– Let n = |x |.
– Build Cn in log n space, hence polynomial time.

– Evaluate the circuit with input x in polynomial time.

• Therefore L ∈ P.
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Relation to P vs. NP

• Theorem 73 implies that P 6= NP if and only if
NP-complete problems have no uniformly polynomial
circuits.

• A stronger conjecture: NP-complete problems have no
polynomial circuits, uniformly or not.

• The above is currently the preferred approach to proving
the P 6= NP conjecture—without success so far.
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BPP’s Circuit Complexity

Theorem 74 (Adleman (1978)) All languages in BPP
have polynomial circuits.

• Our proof will be nonconstructive in that only the
existence of the desired circuits is shown.

– Something exists if its probability of existence is
nonzero.

• It is not known how to efficiently generate circuit Cn

given 1n .

• If the construction of Cn is efficient, then P = BPP, an
unlikely result.
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The Proof

• Let L ∈ BPP be decided by a precise NTM N by clear
majority.

• We shall prove that L has polynomial circuits C0, C1, . . ..

• Suppose N runs in time p(n), where p(n) is a
polynomial.

• Let An = {a1, a2, . . . , am}, where ai ∈ {0, 1}p(n).

• Let m = 12(n + 1).

• Each ai ∈ An represents a sequence of nondeterministic
choices—i.e., a computation path—for N .
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The Proof (continued)

• Let x be an input with |x | = n.

• Circuit Cn simulates N on x with each sequence of
choices in An and then takes the majority of the m

outcomes.

• Because N with ai is a polynomial-time TM, it can be
simulated by polynomial circuits of size O(p(n)2).

– See the proof of Proposition 72 (p. 521).

• The size of Cn is therefore O(mp(n)2) = O(np(n)2), a
polynomial.

• We next prove the existence of An making Cn correct on
all inputs.
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The Circuit
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The Proof (continued)

• Call ai bad if it leads N to a false positive or a false
negative answer.

• Select An uniformly randomly.

• For each x ∈ {0, 1}n, 1/4 of the computations of N are
erroneous.

• Because the sequences in An are chosen randomly and
independently, the expected number of bad ai’s is m/4.

• By the Chernoff bound (p. 502), the probability that the
number of bad ai’s is m/2 or more is at most

e−m/12 < 2−(n+1).
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The Proof (continued)

• The error probability is < 2−(n+1) for each x ∈ {0, 1}n.

• The probability that there is an x such that An results
in an incorrect answer is < 2n2−(n+1) = 2−1.

– prob[A ∪B ∪ · · · ] ≤ prob[ A ] + prob[B ] + · · · .
– Note that each An yields a circuit.

– There are 2mp(n) circuits.

– We just showed that at least half of them make no
mistakes.
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The Proof (concluded)

• So with probability ≥ 0.5, a random An produces a
correct Cn for all inputs of length n.

• Because this probability exceeds 0, an An that makes
majority vote work for all inputs of length n exists.

• Hence a correct Cn exists.
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Cryptography
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Whoever wishes to keep a secret
must hide the fact that he possesses one.

— Johann Wolfgang von Goethe (1749–1832)
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Cryptography

• Alice (A) wants to send a message to Bob (B) over a
channel monitored by Eve (eavesdropper).

• The protocol should be such that the message is known
only to Alice and Bob.

• The art and science of keeping messages secure is
cryptography.

Alice -
Eve

Bob
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Encryption and Decryption

• Alice and Bob agree on two algorithms E and D—the
encryption and the decryption algorithms.

• Both E and D are known to the public in the analysis.

• Alice runs E and wants to send a message x to Bob.

• Bob operates D.

• Privacy is assured in terms of two numbers e, d, the
encryption and decryption keys.

• Alice sends y = E(e, x) to Bob, who then performs
D(d, y) = x to recover x.

• x is called plaintext, and y is called ciphertext.a

aBoth “zero” and “cipher” come from the same Arab word.
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Some Requirements

• D should be an inverse of E given e and d.

• D and E must both run in (probabilistic) polynomial
time.

• Eve should not be able to recover x from y without
knowing d.

– As D is public, d must be kept secret.

– e may or may not be a secret.
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Degrees of Security

• Perfect secrecy: After a ciphertext is intercepted by
the enemy, the a posteriori probabilities of the plaintext
that this ciphertext represents are identical to the a
priori probabilities of the same plaintext before the
interception.

– The probability that plaintext P occurs is
independent of the ciphertext C being observed.

– So knowing C yields no advantage in recovering P.

• Such systems are said to be informationally secure.

• A system is computationally secure if breaking it is
theoretically possible but computationally infeasible.
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Conditions for Perfect Secrecya

• Consider a cryptosystem where:

– The space of ciphertext is as large as that of keys.

– Every plaintext has a nonzero probability of being
used.

• It is perfectly secure if and only if the following hold.

– A key is chosen with uniform distribution.

– For each plaintext x and ciphertext y, there exists a
unique key e such that E(e, x) = y.

aShannon (1949).
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The One-Time Pada

1: Alice generates a random string r as long as x;
2: Alice sends r to Bob over a secret channel;
3: Alice sends r ⊕ x to Bob over a public channel;
4: Bob receives y;
5: Bob recovers x := y ⊕ r;

aMauborgne and Vernam (1917); Shannon (1949). It was allegedly

used for the hotline between Russia and U.S.
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Analysis

• The one-time pad uses e = d = r.

• This is said to be a private-key cryptosystem.

• Knowing x and knowing r are equivalent.

• Because r is random and private, the one-time pad
achieves perfect secrecy (see also p. 540).

• The random bit string must be new for each round of
communication.

– Cryptographically strong pseudorandom
generators require exchanging only the seed once.

• The assumption of a private channel is problematic.
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Public-Key Cryptographya

• Suppose only d is private to Bob, whereas e is public
knowledge.

• Bob generates the (e, d) pair and publishes e.

• Anybody like Alice can send E(e, x) to Bob.

• Knowing d, Bob can recover x by D(d,E(e, x)) = x.

• The assumptions are complexity-theoretic.

– It is computationally difficult to compute d from e.

– It is computationally difficult to compute x from y

without knowing d.
aDiffie and Hellman (1976).
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Whitfield Diffie (1944–)
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Martin Hellman (1945–)
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Complexity Issues

• Given y and x, it is easy to verify whether E(e, x) = y.

• Hence one can always guess an x and verify.

• Cracking a public-key cryptosystem is thus in NP.

• A necessary condition for the existence of secure
public-key cryptosystems is P 6= NP.

• But more is needed than P 6= NP.

• It is not sufficient that D is hard to compute in the
worst case.

• It should be hard in “most” or “average” cases.
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One-Way Functions

A function f is a one-way function if the following hold.a

1. f is one-to-one.

2. For all x ∈ Σ∗, |x |1/k ≤ |f(x)| ≤ |x |k for some k > 0.

• f is said to be honest.

3. f can be computed in polynomial time.

4. f−1 cannot be computed in polynomial time.

• Exhaustive search works, but it is too slow.
aDiffie and Hellman (1976); Boppana and Lagarias (1986); Grollmann

and Selman (1988); Ko (1985); Ko, Long, and Du (1986); Watanabe

(1985); Young (1983).
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Existence of One-Way Functions

• Even if P 6= NP, there is no guarantee that one-way
functions exist.

• No functions have been proved to be one-way.

• Is breaking glass a one-way function?
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Candidates of One-Way Functions

• Modular exponentiation f(x) = gx mod p, where g is a
primitive root of p.

– Discrete logarithm is hard.a

• The RSAb function f(x) = xe mod pq for an odd e

relatively prime to φ(pq).

– Breaking the RSA function is hard.

aConjectured to be 2nε
for some ε > 0 in both the worst-case sense

and average sense. It is in NP in some sense; Grollmann and Selman

(1988).
bRivest, Shamir, and Adleman (1978).
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Candidates of One-Way Functions (concluded)

• Modular squaring f(x) = x2 mod pq.

– Determining if a number with a Jacobi symbol 1 is a
quadratic residue is hard—the quadratic
residuacity assumption (QRA).
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The RSA Function

• Let p, q be two distinct primes.

• The RSA function is xe mod pq for an odd e relatively
prime to φ(pq).

– By Lemma 51 (p. 390),

φ(pq) = pq

(
1− 1

p

)(
1− 1

q

)
= pq − p− q + 1.

• As gcd(e, φ(pq)) = 1, there is a d such that

ed ≡ 1 mod φ(pq),

which can be found by the Euclidean algorithm.
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Adi Shamir, Ron Rivest, and Leonard Adleman
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Ron Rivest (1947–)
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Adi Shamir (1952–)
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Leonard Adleman (1945–)
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A Public-Key Cryptosystem Based on RSA

• Bob generates p and q.

• Bob publishes pq and the encryption key e, a number
relatively prime to φ(pq).

– The encryption function is y = xe mod pq.

– Knowing φ(pq), Bob calculates d such that
ed = 1 + kφ(pq) for some k ∈ Z.

• The decryption function is yd mod pq.

• It works because yd = xed = x1+kφ(pq) = x mod pq by
the Fermat-Euler theorem when gcd(x, pq) = 1 (p. 398).
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The “Security” of the RSA Function

• Factoring pq or calculating d from (e, pq) seems hard.

– See also p. 394.

• Breaking the last bit of RSA is as hard as breaking the
RSA.a

• Recommended RSA key sizes:

– 1024 bits up to 2010.

– 2048 bits up to 2030.

– 3072 bits up to 2031 and beyond.
aAlexi, Chor, Goldreich, and Schnorr (1988).
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The “Security” of the RSA Function (concluded)

• Recall that problem A is “harder than” problem B if
solving A results in solving B.

– Factorization is “harder than” breaking the RSA.

– Calculating Euler’s phi function is “harder than”
breaking the RSA.

– Factorization is “harder than” calculating Euler’s phi
function (see Lemma 51 on p. 390).

• Factorization cannot be NP-hard unless NP = coNP.a

• So breaking the RSA is unlikely to imply P = NP.
aBrassard (1979).
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The Secret-Key Agreement Problem

• Exchanging messages securely using a private-key
cryptosystem requires Alice and Bob possessing the
same key (p. 542).

• How can they agree on the same secret key when the
channel is insecure?

• This is called the secret-key agreement problem.

• It was solved by Diffie and Hellman (1976) using
one-way functions.
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The Diffie-Hellman Secret-Key Agreement Protocol

1: Alice and Bob agree on a large prime p and a primitive
root g of p; {p and g are public.}

2: Alice chooses a large number a at random;
3: Alice computes α = ga mod p;
4: Bob chooses a large number b at random;
5: Bob computes β = gb mod p;
6: Alice sends α to Bob, and Bob sends β to Alice;
7: Alice computes her key βa mod p;
8: Bob computes his key αb mod p;
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Analysis

• The keys computed by Alice and Bob are identical:

βa = gba = gab = αb mod p.

• To compute the common key from p, g, α, β is known as
the Diffie-Hellman problem.

• It is conjectured to be hard.

• If discrete logarithm is easy, then one can solve the
Diffie-Hellman problem.

– Because a and b can then be obtained by Eve.

• But the other direction is still open.
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A Parallel History

• Diffie and Hellman’s solution to the secret-key
agreement problem led to public-key cryptography.

• At around the same time (or earlier) in Britain, the
RSA public-key cryptosystem was invented first before
the Diffie-Hellman secret-key agreement scheme was.

– Ellis, Cocks, and Williamson of the Communications
Electronics Security Group of the British Government
Communications Head Quarters (GCHQ).
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Digital Signaturesa

• Alice wants to send Bob a signed document x.

• The signature must unmistakably identifies the sender.

• Both Alice and Bob have public and private keys

eAlice, eBob, dAlice, dBob.

• Assume the cryptosystem satisfies the commutative property

E(e, D(d, x)) = D(d, E(e, x)). (8)

– As (xd)e = (xe)d, the RSA system satisfies it.

– Every cryptosystem guarantees D(d, E(e, x)) = x.

aDiffie and Hellman (1976).
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Digital Signatures Based on Public-Key Systems

• Alice signs x as
(x,D(dAlice, x)).

• Bob receives (x, y) and verifies the signature by checking

E(eAlice, y) = E(eAlice, D(dAlice, x)) = x

based on Eq. (8).

• The claim of authenticity is founded on the difficulty of
inverting EAlice without knowing the key dAlice.

• Warning: If Alice signs anything presented to her, she
might inadvertently decrypt a ciphertext of hers.
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Probabilistic Encryptiona

• A deterministic cryptosystem can be broken if the
plaintext has a distribution that favors the “easy” cases.

• The ability to forge signatures on even a vanishingly
small fraction of strings of some length is a security
weakness if those strings were the probable ones!

• A scheme may also “leak” partial information (parity of
the plaintext, e.g.).

• The first solution to the problems of skewed distribution
and partial information was based on the QRA.

aGoldwasser and Micali (1982).
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Shafi Goldwasser (1958–)
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Silvio Micali (1954–)
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The Setup

• Bob publishes n = pq, a product of two distinct primes,
and a quadratic nonresidue y with Jacobi symbol 1.

• Bob keeps secret the factorization of n.

• To send bit string b1b2 · · · bk to Bob, Alice encrypts the
bits by choosing a random quadratic residue modulo n if
bi is 1 and a random quadratic nonresidue with Jacobi
symbol 1 otherwise.

• A sequence of residues and nonresidues are sent.

• Knowing the factorization of n, Bob can efficiently test
quadratic residuacity and thus read the message.
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A Useful Lemma

Lemma 75 Let n = pq be a product of two distinct primes.
Then a number y ∈ Z∗n is a quadratic residue modulo n if
and only if (y | p) = (y | q) = 1.

• The “only if” part:

– Let x be a solution to x2 = y mod pq.

– Then x2 = y mod p and x2 = y mod q also hold.

– Hence y is a quadratic modulo p and a quadratic
residue modulo q.
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The Proof (concluded)

• The “if” part:

– Let a2
1 = y mod p and a2

2 = y mod q.

– Solve

x = a1 mod p,

x = a2 mod q,

for x with the Chinese remainder theorem.

– As x2 = y mod p, x2 = y mod q, and gcd(p, q) = 1,
we must have x2 = y mod pq.
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The Protocol for Alice

1: for i = 1, 2, . . . , k do
2: Pick r ∈ Z∗n randomly;
3: if bi = 1 then
4: Send r2 mod n; {Jacobi symbol is 1.}
5: else
6: Send r2y mod n; {Jacobi symbol is still 1.}
7: end if
8: end for
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The Protocol for Bob

1: for i = 1, 2, . . . , k do
2: Receive r;
3: if (r | p) = 1 and (r | q) = 1 then
4: bi := 1;
5: else
6: bi := 0;
7: end if
8: end for
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Semantic Security

• This encryption scheme is probabilistic.

• There are a large number of different encryptions of a
given message.

• One is chosen at random by the sender to represent the
message.

• This scheme is both polynomially secure and
semantically secure.
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