Theory of Computation

Homework 3
Due: 2008/05/01

Problem 1. Show that there exist a constant \(c > 0 \) and a language \(L \not\in \text{NTIME}(n^c) \) such that \(L \) is logspace reducible to a language in \(\text{NTIME}(n^c) \). You may use the nondeterministic time hierarchy theorem, proved by Cook in 1972, which implies \(\text{NTIME}(n^a) \subset \text{NTIME}(n^b) \) for all \(b > a > 1 \). (Hint: The Cook-Levin theorem states that every language in \(\text{NP} \) is logspace reducible to \(\text{SAT} \), which lies in \(\text{NTIME}(n^c) \) for some constant \(c > 0 \). The nondeterministic time hierarchy theorem guarantees the nonemptiness of \(\text{NP} \setminus \text{NTIME}(n^c) \).)

Problem 2. Prove that

\[
\left\{ x_1, \ldots, x_n, w \in \mathbb{N} \mid \exists S \subseteq \{1, \ldots, n\} \text{ such that } \sum_{i \in S} x_i = w \geq \frac{\sum_{i=1}^{n} x_i}{2} \right\}
\]

is \(\text{NP} \)-complete. You may use reductions from any problem shown to be \(\text{NP} \)-complete in class or in the textbook. For example, the following problem is shown to be \(\text{NP} \)-complete on pages 349–355 of the slides:

Given positive integers \(v_1, \ldots, v_n, K \), does there exist a subset of \(\{v_1, \ldots, v_n\} \) that adds up to exactly \(K \)?