Theory of Computation

Homework 3 Due: 2008/05/01

Problem 1. Show that there exist a constant c > 0 and a language $L \notin$ NTIME (n^c) such that L is logspace reducible to a language in NTIME (n^c) . You may use the nondeterministic time hierarchy theorem, proved by Cook in 1972, which implies NTIME $(n^a) \subsetneq$ NTIME (n^b) for all b > a > 1. (Hint: The Cook-Levin theorem states that every language in NP is logspace reducible to SAT, which lies in NTIME (n^c) for some constant c > 0. The nondeterministic time hierarchy theorem guarantees the nonemptiness of NP \ NTIME (n^c) .)

Problem 2. Prove that

$$\left\{x_1, \dots, x_n, w \in \mathbb{N} \mid \exists S \subseteq \{1, \dots, n\} \text{ such that } \sum_{i \in S} x_i = w \ge \frac{\sum_{i=1}^n x_i}{2}\right\}$$

is NP-complete. You may use reductions from any problem shown to be NP-complete in class or in the textbook. For example, the following problem is shown to be NP-complete on pages 349–355 of the slides:

Given positive integers v_1, \ldots, v_n, K , does there exist a subset of $\{v_1, \ldots, v_n\}$ that adds up to exactly K?