Theory of Computation

Mid-Term Examination on April 17, 2008 Spring Semester, 2008

Problem 1 (15 points). Please answer the following questions.

- 1. [5 points] Is EXP \subseteq NEXP true?
- 2. [5 points] Does there exist a language in NP decidable in time linear in the input length?
- 3. [5 points] In 1975, Richard Ladner proved the famous theorem that if $NP \neq P$, then there is a language in NP that is neither in P nor NP-complete. Is the converse of the theorem true? That is, if some language in NP is neither in P nor NP-complete, can we conclude $NP \neq P$?

Problem 2 (20 points). Show that there exists a language $L \subseteq \{0, 1\}^*$ that belongs neither to RE nor to coRE.

Problem 3 (20 points). Show that there exists a language in NPSPACE that is not decidable in time cubic in the input length.

Problem 4 (20 points). Does there exist a non-recursive language in NP?

Problem 5 (20 points). Show that it is NP-hard to determine whether a Boolean expression in conjunctive normal form has at least two satisfying assignments. (Hint: Consider adding a clause C to a Boolean expression F in conjunctive normal form where the variables in C do not appear in F.)

Problem 6 (20 points). Prove that $NSPACE(\log^2 n) \subseteq TIME(2^{(\log^5 n)})$.