a

Some Boolean Functions Need Exponential Circuits

Theorem 15 (Shannon (1949)) For any n > 2, there is
an n-ary boolean function f such that no boolean circuits

with 2™ /(2n) or fewer gates can compute it.

o There are 22" different n-ary boolean functions (see
p. 159).

e So it suffices to prove that the number of boolean

circuits with 2" /(2n) or fewer gates is less than 22".

2Can be strengthened to “almost all boolean functions ...”
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The Proof (concluded)

e There are at most ((n +5) x m?)™ boolean circuits with

m or fewer gates (see next page).
e But ((n+5) x m?)™ < 22" when m = 2"/(2n):
mlogy((n +5) x m?)

4n?
_ gn (g B2
2n

< 2
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n+5 choices

m choices m choices
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Claude Elwood Shannon (1916-2001)
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Comments

The lower bound is rather tight because an upper bound
is n2™ (p. 160).

In the proof, we counted the number of circuits.
Some circuits may not be valid at all.

Others may compute the same boolean functions.
Both are fine because we only need an upper bound.

We do not need to consider the outdoing edges because

they have been counted in the incoming edges.
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Relations between Complexity Classes
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Proper (Complexity) Functions

e We say that f : N — N is a proper (complexity)
function if the following hold:

— f is nondecreasing.

— There is a k-string TM M such that
My(x) = /U= for any .2

— My halts after O(|z |+ f(|z|)) steps.
— My uses O(f(]x|)) space besides its input x.

e M;’s behavior depends only on |z | not z’s contents.

e M ’s running time is basically bounded by f(n).

2This point will become clear in Proposition 16 on p. 178.
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Examples of Proper Functions

Most “reasonable” functions are proper: ¢, [logn],

polynomials of n, 2™, v/n, n!, etc.
If f and g are proper, then so are f + g, fg, and 29.

Nonproper functions when serving as the time bounds

for complexity classes spoil “the theory building.”

— For example, TIME(f(n)) = TIME(2/(™)) for some

recursive function f (the gap theorem).?

Only proper functions f will be used in TIME(f(n)),
SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

2Trakhtenbrot (1964); Borodin (1972).
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Space-Bounded Computation and Proper Functions

e In the definition of space-bounded computations, the

TMs are not required to halt at all.
e When the space is bounded by a proper function f,
computations can be assumed to halt:

— Run the TM associated with f to produce an output
of length f(n) first.

— The space-bound computation must repeat a

configuration if it runs for more than ¢*+7 (") steps

for some ¢ (p. 195).

— So we can count steps to prevent infinite loops.
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Precise Turing Machines

e A TM M is precise if there are functions f and ¢ such
that for every n € N, for every x of length n, and for
every computation path of M,

— M halts after precisely f(n) steps, and

— All of its strings are of length precisely g(n) at
halting.
x If M is a TM with input and output, we exclude
the first and the last strings.

e N can be deterministic or nondeterministic.
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Precise TMs Are General

Proposition 16 Suppose a TM* M decides L within time
(space) f(n), where f is proper. Then there is a precise TM
M'" which decides L in time O(n + f(n)) (space O(f(n)),

respectively).

e )M’ on input z first simulates the TM M associated

with the proper function f on .

o M;’s output of length f(|x|) will serve as a “yardstick”

or an “alarm clock.”

2]t can be deterministic or nondeterministic.
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Important Complexity Classes

e We write expressions like n* to denote the union of all

complexity classes, one for each value of k.

e For example,

NTIME(n*) = ] NTIME(n/).
7>0
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Important Complexity Classes (concluded)

P TIME(n"®),
NP NTIME(n®),
PSPACE SPACE(n"),
NPSPACE NSPACE(n"),
E TIME(2F"),
TIME(2™),
SPACE(logn),
NSPACE(logn).
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Complements of Nondeterministic Classes

e From p. 136, we know R, RE, and coRE are distinct.

— coRE contains the complements of languages in RE,

not the languages not in RE.

e Recall that the complement of L, denoted by L, is the
language >* — L.
— SAT COMPLEMENT is the set of unsatisfiable boolean

expressions.

— HAMILTONIAN PATH COMPLEMENT is the set of
graphs without a Hamiltonian path.
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The Co-Classes

e For any complexity class C, coC denotes the class

{L:LecC}.

e Clearly, if C is a deterministic time or space complezity

class, then C = coC.
— They are said to be closed under complement.

— A deterministic TM deciding L can be converted to
one that decides L within the same time or space

bound by reversing the “yes” and “no” states.

e Whether nondeterministic classes for time are closed

under complement is not known (p. 85).
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Comments

Then coC is the class
{L:LecC}.
— So L € C if and only if L € coC.

But it is not true that L € C if and only if L ¢ coC.

— coC is not defined as C
For example, suppose C = {{2,4,6,8,10,...}}.
Then coC = {{1,3,5,7,9,...}}.

But C = 2112317 — {42 4 6,8,10,...}}.
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The Quantified Halting Problem

e Let f(n) > n be proper.
e Define

Hy ={M;x: M accepts input x
after at most f(|z|) steps},

where M is deterministic.

e Assume the input is binary.
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H; € TIME(f(n)?)

e For each input M;x, we simulate M on z with an alarm
clock of length f(|x|).

— Use the single-string simulator (p. 65), the universal
TM (p. 121), and the linear speedup theorem (p. 71).

— Our simulator accepts M ;x if and only if M accepts
x before the alarm clock runs out.

e From p. 70, the total running time is O({prk%,f(n)?),
where /), is the length to encode each symbol or state of
M and kjps is M’s number of strings.

o As (pk%, = O(n), the running time is O(f(n)?), where
the constant is independent of M.
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Hy ¢ TIME(f([n/2]))

e Suppose TM Mpy. decides Hy in time f(|n/2]).
f f

e Consider machine D¢(M):
if My, (M;M) = “yes” then “no” else “yes”

e Dy on input M runs in the same time as My, on input

M; M, ie., in time f(|2%t |) = f(n), where n = | M |.2

2 A student pointed out on October 6, 2004, that this estimation omits
the time to write down M ; M.
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The Proof (concluded)

D¢(Dy) = “yes”

Dy; Dy ¢ Hy
= Dy does not accept Dy within time f(| D¢ |)
= Dy(Dy) = “no”

a contradiction

e Similarly, D¢(Dy) = “no” = Ds(Dy) = “yes.”
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The Time Hierarchy Theorem

Theorem 17 If f(n) > n is proper, then
TIME(f(n)) € TIME(f(2n 4+ 1)°).

e The quantified halting problem makes it so.

Corollary 18 P C EXP.
e P C TIME(2™) because poly(n) < 2" for n large enough.
e But by Theorem 17,

TIME(2") € TIME((22"+1)?) C TIME(2" ) C EXP.

e So P C EXP.
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The Space Hierarchy Theorem

Theorem 19 (Hennie and Stearns (1966)) If f(n) is

proper, then

SPACE(f(n)) & SPACE(f(n)log f(n)).

Corollary 20 L. € PSPACE.
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The Reachability Method

The computation of a time-bounded TM can be
represented by directional transitions between

configurations.

The reachability method constructs a directed graph
with all the TM configurations as its nodes and edges

connecting two nodes if one yields the other.

The start node representing the initial configuration has

zero in degree.

When the TM is nondeterministic, a node may have an
out degree greater than one.
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lllustration of the Reachability Method

Initial
configuration | yes

/”“‘\
X ) N
H | 4
~ /’ I
/./t.
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Relations between Complexity Classes

Theorem 21 Suppose f(n) is proper. Then

. SPACE(f(n)) C NSPACE(f(n)),
TIME(f(n)) € NTIME(f(n)).
C

. NTIME(f(n)) C SPACE(f(n)).

. NSPACE(f(n)) C TIME(klogn+/(n)).

Proof of 2:
— Explore the computation tree of the NTM for “yes.”

— Specifically, generate a f(n)-bit sequence denoting
the nondeterministic choices over f(n) steps.
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Proof of Theorem 21(2)

e (continued)
— Simulate the NTM based on the choices.

— Recycle the space and then repeat the above steps

until a “yes” is encountered or the tree is exhausted.

— Each path simulation consumes at most O(f(n))

space because it takes O(f(n)) time.
— The total space is O(f(n)) as space is recycled.
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Proof of Theorem 21(3)
e Let k-string NTM

M = (K,X,A,s)

with input and output decide L € NSPACE(f(n)).

e Use the reachability method on the configuration graph
of M on input = of length n.

e A configuration is a (2k + 1)-tuple

(Q7wlaulaw27u27 <. ,’UJk;,’U/k).
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Proof of Theorem 21(3) (continued)

We only care about

(q, 1, wa, U2, ...y W1, Uk—1),

where 7 is an integer between 0 and n for the position of

the first cursor.

The number of configurations is therefore at most

K| x (n41) x |20 = O™ My (9)

for some c¢;, which depends on M.

Add edges to the configuration graph based on M’s

transition function.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 195



Proof of Theorem 21(3) (concluded)

e r € L & there is a path in the configuration graph from
the initial configuration to a configuration of the form
(“yes”,i,...) [there may be many of them)].

e The problem is therefore that of REACHABILITY on a

log n+f(n)

graph with O(c, ) nodes.

o It is in TIME(cl°8"*+/ (™) for some ¢ because

REACHABILITY is in TIME(n*) for some k and

k
logn n ogn n
[Clg +/( )} = (ckylegn+/(n),
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The Grand Chain of Inclusions

L C NL C P C NP C PSPACE C EXP.

e By Corollary 20 (p. 189), we know L. C PSPACE.

e The chain must break somewhere between L. and

PSPACE.
e [t is suspected that all four inclusions are proper.

e But there are no proofs yet.?

2Carl Friedrich Gauss (1777-1855), “I could easily lay down a mul-
titude of such propositions, which one could neither prove nor dispose

Of 7
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Nondeterministic Space and Deterministic Space

By Theorem 5 (p. 95),

NTIME(f(n)) C TIME(c/ ™),

an exponential gap.

There is no proof that the exponential gap is inherent,

however.
How about NSPACE vs. SPACE?

Surprisingly, the relation is only quadratic, a
polynomial, by Savitch’s theorem.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 198



Savitch's Theorem

Theorem 22 (Savitch (1970))

REACHABILITY € SPACE(log® n).

e Let G be a graph with n nodes.

e For ¢ > 0, let
PATH(z,y, 1)
mean there is a path from node x to node y of length at

most 2°.

e There is a path from z to y if and only if
PATH(z,y, [logn]|) holds.
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The Proof (continued)

For ¢ > 0, PATH(z, y, ) if and only if there exists a z
such that PATH(z, 2,7 — 1) and PATH(z,y,i — 1).

For PATH(x,y,0), check the input graph or if z = .

Compute PATH(z, y, [logn]) with a depth-first search

on a graph with nodes (z,y,7)s (see next page).

Like stacks in recursive calls, we keep only the current

path of (x,y,1)s.

The space requirement is proportional to the depth of
the tree, [logn].
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PATH(x,y,log n)

PATH(x.z,log n-1) PATH(z,y,log n-1)

e Depth is [logn], and each node (x,y,%) needs space
O(logn).

e The total space is O(log” n).
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The Proof (concluded): Algorithm for PATH(x, vy, ?)
: if © =0 then
if x =y or (z,y) € G then
return true;

else

end if
. else
for z=1,2,...,ndo
if PATH(x,z,i — 1) and PATH(z,y,7 — 1) then
10: return true;
11: end if

end for

1
2
3
4
5: return false;
6
7
8
9

return false;
. end if
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The Relation between Nondeterministic Space and
Deterministic Space Only Quadratic

Corollary 23 Let f(n) > logn be proper. Then
NSPACE(f(n)) € SPACE(f*(n)).

e Apply Savitch’s theorem to the configuration graph of
the NTM on the input.

e From p. 195, the configuration graph has O(c/(™)

nodes; hence each node takes space O(f(n)).

e But if we construct explicitly the whole graph before

applying Savitch’s theorem, we get O(c/ (™) space!
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The Proof (continued)

The way out is not to generate the graph at all.
Instead, keep the graph implicit.

We check for connectedness only when ¢ = 0, by

examining the input string.

There, given configurations x and y, we go over the
Turing machine’s program to determine if there is an

instruction that can turn x into y in one step.?

@Thanks to a lively class discussion on October 15, 2003.
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The Proof (concluded)

e The z variable in the algorithm on p. 202 simply runs
through all possible valid configurations.

— Let 2=0,1,...,0(c/™).

— Make sure z is a valid configuration before using it in

the recursive calls.?

e Each z has length O(f(n)) by Eq. (2) on p. 195.

2Thanks to a lively class discussion on October 13, 2004.
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Implications of Savitch's Theorem

e PSPACE = NPSPACE.
e Nondeterminism is less powerful with respect to space.

e Nondeterminism may be very powerful with respect to

time as it is not known if P = NP.
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Nondeterministic Space Is Closed under Complement

e Closure under complement is trivially true for

deterministic complexity classes (p. 182).

e It is known that?

coNSPACE(f(n)) = NSPACE(f(n)). (3)

coNL NL,
coNPSPACE NPSPACE.

e But there are still no hints of coNP = NP.

2Szelepscényi (1987) and Immerman (1988).
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Reductions and Completeness
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Degrees of Difficulty

e When is a problem more difficult than another?
e B reduces to A if there is a transformation R which for
every input x of B yields an equivalent input R(x) of A.

— The answer to = for B is the same as the answer to
R(x) for A.

— There must be restrictions on the complexity of
computing R.

— Otherwise, R(x) might as well solve B.
x F.g., R(x) = “yes” if and only if x € B!

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 209



Degrees of Difficulty (concluded)

e Problem A is at least as hard as problem B if B reduces

to A.

e This makes intuitive sense: If A is able to solve your
problem B, then A must be at least as hard.
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Reduction

. algorithm

Solving problem B by calling the algorithm for problem once

and without further processing its answer.
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Comments?®
Suppose B reduces to A via a transformation R.
The input x is an instance of B.

The output R(x) is an instance of A.

R(x) may not span all possible instances of A.

So some instances of A may never appear in the

reduction.

2Contributed by Mr. Ming-Feng Tsai (D92922003) on October 29,
2003.
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Reduction between Languages

Language L is reducible to L if there is a function R

computable by a deterministic TM in space O(logn).

Furthermore, for all inputs x, x € L7 if and only if
R(SE) c LQ.

R is said to be a (Karp) reduction from L; to Ls.

Note that by Theorem 21 (p. 192), R runs in polynomial

time.
Suppose R is a reduction from L to Ls.

Then solving “R(z) € Ly” is an algorithm for solving
= Ll-”
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A Paradox?

Degree of difficulty is not defined in terms of absolute

complexity.

So a language B € TIME(n°?) may be “easier” than a
language A € TIME(n?).

This happens when B is reducible to A.

But isn’t this a contradiction when B ¢ TIME(n%)?

That is, how can a problem requiring n>? time be

reducible to a problem solvable in n° time?
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A Paradox? (concluded)

The so-called contradiction does not hold.

When we solve the problem “x € B?” with “R(z) € A?”,
we must consider the time spent by R(x) and its length

| B(z) |

If | R(z) | = Q(n33), then the time of answering
“R(x) € A?” becomes Q((n?3)3) = Q(n).

Suppose, on the other hand, that | R(z) | = o(n>3).
Then R(x) must run in time Q(n%).

In either case, there is no contradiction.
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HAMILTONIAN PATH

A Hamiltonian path of a graph is a path that visits
every node of the graph exactly once.

Suppose graph G has n nodes: 1,2,...,n.

A Hamiltonian path can be expressed as a permutation

mof {1,2,...,n} such that

— (%) = j means the ith position is occupied by node j.

— (r(@),7(i+1)eGfori=1,2,...,n—1.

HAMILTONIAN PATH asks if a graph has a Hamiltonian
path.
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Reduction of HAMILTONIAN PATH to SAT

e Given a graph G, we shall construct a CNF R(G) such
that R(G) is satisfiable if and only if G has a

Hamiltonian path.

e R(G) has n? boolean variables z;;, 1 <i,7 < n.

® IT;; Ineans

the ith position in the Hamiltonian path is
occupied by node j.
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T12 = Tl = T34 = T45 = T53 = Teg = T76 = Tgg = Loy = 1.
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The Clauses of R(G) and Their Intended Meanings

1. Each node 5 must appear in the path.

® T1; Vxo; V- -V xy,; for each j.

. No node j appears twice in the path.
e —x;; Vxy,; for all 7,5, k with ¢ # k.

. Every position ¢ on the path must be occupied.

® ;1 VxioV- -V ax, for each 1.

. No two nodes 5 and k£ occupy the same position in the path.

o —x,;; V x; for all 7,7, k with 5 # k.

. Nonadjacent nodes 7 and 7 cannot be adjacent in the path.

o —Tp; V Xy, forall (i,5) G and k=1,2,...,n—1.
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The Proof

R(G) contains O(n?) clauses.

R(G) can be computed efficiently (simple exercise).
Suppose T' = R(G).

From Clauses of 1 and 2, for each node j there is a

unique position ¢ such that 7' = z;;.

From Clauses of 3 and 4, for each position ¢ there is a

unique node j such that 7' = z;;.

So there is a permutation 7 of the nodes such that

m(i) = j if and only if T |= z;;.
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The Proof (concluded)

e Clauses of 5 furthermore guarantees that
(w(1),7(2),...,m(n)) is a Hamiltonian path.

e Conversely, suppose GG has a Hamiltonian path

where 7 is a permutation.

e Clearly, the truth assignment
T(z;;) = true if and only if 7(i) = j

satisfies all clauses of R(G).
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A Comment?

e An answer to “Is R(G) satisfiable?” does answer “Is G

Hamiltonian?”

e But a positive answer does not give a Hamiltonian path

for G.

— Providing witness is not a requirement of reduction.

e A positive answer to “Is R(G) satisfiable?” plus a

satisfying truth assignment does provide us with a
Hamiltonian path for G.

2Contributed by Ms. Amy Liu (J94922016) on May 29, 2006.
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