
Some Boolean Functions Need Exponential Circuitsa

Theorem 15 (Shannon (1949)) For any n ≥ 2, there is
an n-ary boolean function f such that no boolean circuits
with 2n/(2n) or fewer gates can compute it.

• There are 22n

different n-ary boolean functions (see
p. 159).

• So it suffices to prove that the number of boolean
circuits with 2n/(2n) or fewer gates is less than 22n

.
aCan be strengthened to “almost all boolean functions . . .”
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The Proof (concluded)

• There are at most ((n + 5)×m2)m boolean circuits with
m or fewer gates (see next page).

• But ((n + 5)×m2)m < 22n

when m = 2n/(2n):

m log2((n + 5)×m2)

= 2n

(
1− log2

4n2

n+5

2n

)

< 2n

for n ≥ 2.
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m choices

n+5 choices

m choices
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Claude Elwood Shannon (1916–2001)
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Comments

• The lower bound is rather tight because an upper bound
is n2n (p. 160).

• In the proof, we counted the number of circuits.

• Some circuits may not be valid at all.

• Others may compute the same boolean functions.

• Both are fine because we only need an upper bound.

• We do not need to consider the outdoing edges because
they have been counted in the incoming edges.
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Relations between Complexity Classes
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Proper (Complexity) Functions

• We say that f : N→ N is a proper (complexity)
function if the following hold:

– f is nondecreasing.

– There is a k-string TM Mf such that
Mf (x) = uf(| x |) for any x.a

– Mf halts after O(|x |+ f(|x |)) steps.

– Mf uses O(f(|x |)) space besides its input x.

• Mf ’s behavior depends only on |x | not x’s contents.

• Mf ’s running time is basically bounded by f(n).

aThis point will become clear in Proposition 16 on p. 178.
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Examples of Proper Functions

• Most “reasonable” functions are proper: c, dlog ne,
polynomials of n, 2n,

√
n , n!, etc.

• If f and g are proper, then so are f + g, fg, and 2g.

• Nonproper functions when serving as the time bounds
for complexity classes spoil “the theory building.”

– For example, TIME(f(n)) = TIME(2f(n)) for some
recursive function f (the gap theorem).a

• Only proper functions f will be used in TIME(f(n)),
SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

aTrakhtenbrot (1964); Borodin (1972).
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Space-Bounded Computation and Proper Functions

• In the definition of space-bounded computations, the
TMs are not required to halt at all.

• When the space is bounded by a proper function f ,
computations can be assumed to halt:

– Run the TM associated with f to produce an output
of length f(n) first.

– The space-bound computation must repeat a
configuration if it runs for more than cn+f(n) steps
for some c (p. 195).

– So we can count steps to prevent infinite loops.
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Precise Turing Machines

• A TM M is precise if there are functions f and g such
that for every n ∈ N, for every x of length n, and for
every computation path of M ,

– M halts after precisely f(n) steps, and

– All of its strings are of length precisely g(n) at
halting.

∗ If M is a TM with input and output, we exclude
the first and the last strings.

• M can be deterministic or nondeterministic.
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Precise TMs Are General

Proposition 16 Suppose a TMa M decides L within time
(space) f(n), where f is proper. Then there is a precise TM
M ′ which decides L in time O(n + f(n)) (space O(f(n)),
respectively).

• M ′ on input x first simulates the TM Mf associated
with the proper function f on x.

• Mf ’s output of length f(|x |) will serve as a “yardstick”
or an “alarm clock.”

aIt can be deterministic or nondeterministic.
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Important Complexity Classes

• We write expressions like nk to denote the union of all
complexity classes, one for each value of k.

• For example,

NTIME(nk) =
⋃

j>0

NTIME(nj).
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Important Complexity Classes (concluded)

P = TIME(nk),

NP = NTIME(nk),

PSPACE = SPACE(nk),

NPSPACE = NSPACE(nk),

E = TIME(2kn),

EXP = TIME(2nk

),

L = SPACE(log n),

NL = NSPACE(log n).
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Complements of Nondeterministic Classes

• From p. 136, we know R, RE, and coRE are distinct.

– coRE contains the complements of languages in RE,
not the languages not in RE.

• Recall that the complement of L, denoted by L̄, is the
language Σ∗ − L.

– sat complement is the set of unsatisfiable boolean
expressions.

– hamiltonian path complement is the set of
graphs without a Hamiltonian path.
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The Co-Classes

• For any complexity class C, coC denotes the class

{L̄ : L ∈ C}.

• Clearly, if C is a deterministic time or space complexity
class, then C = coC.
– They are said to be closed under complement.

– A deterministic TM deciding L can be converted to
one that decides L̄ within the same time or space
bound by reversing the “yes” and “no” states.

• Whether nondeterministic classes for time are closed
under complement is not known (p. 85).
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Comments

• Then coC is the class

{L̄ : L ∈ C}.

– So L ∈ C if and only if L̄ ∈ coC.
• But it is not true that L ∈ C if and only if L 6∈ coC.

– coC is not defined as C̄.
• For example, suppose C = {{2, 4, 6, 8, 10, . . .}}.
• Then coC = {{1, 3, 5, 7, 9, . . .}}.
• But C̄ = 2{1,2,3,...}∗ − {{2, 4, 6, 8, 10, . . .}}.
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The Quantified Halting Problem

• Let f(n) ≥ n be proper.

• Define

Hf = {M ; x : M accepts input x

after at most f(|x |) steps},

where M is deterministic.

• Assume the input is binary.
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Hf ∈ TIME(f(n)3)

• For each input M ; x, we simulate M on x with an alarm
clock of length f(|x |).
– Use the single-string simulator (p. 65), the universal

TM (p. 121), and the linear speedup theorem (p. 71).

– Our simulator accepts M ; x if and only if M accepts
x before the alarm clock runs out.

• From p. 70, the total running time is O(`Mk2
Mf(n)2),

where `M is the length to encode each symbol or state of
M and kM is M ’s number of strings.

• As `Mk2
M = O(n), the running time is O(f(n)3), where

the constant is independent of M .
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Hf 6∈ TIME(f(bn/2c))
• Suppose TM MHf

decides Hf in time f(bn/2c).
• Consider machine Df (M):

if MHf
(M ;M) = “yes” then “no” else “yes”

• Df on input M runs in the same time as MHf
on input

M ; M , i.e., in time f(b 2n+1
2 c) = f(n), where n = |M |.a

aA student pointed out on October 6, 2004, that this estimation omits

the time to write down M ; M .
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The Proof (concluded)

• First,

Df (Df ) = “yes”

⇒ Df ; Df 6∈ Hf

⇒ Df does not accept Df within time f(|Df |)
⇒ Df (Df ) = “no”

a contradiction

• Similarly, Df (Df ) = “no” ⇒ Df (Df ) = “yes.”
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The Time Hierarchy Theorem

Theorem 17 If f(n) ≥ n is proper, then

TIME(f(n)) ( TIME(f(2n + 1)3).

• The quantified halting problem makes it so.

Corollary 18 P ( EXP.

• P ⊆ TIME(2n) because poly(n) ≤ 2n for n large enough.

• But by Theorem 17,

TIME(2n) ( TIME((22n+1)3) ⊆ TIME(2n2
) ⊆ EXP.

• So P ( EXP.
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The Space Hierarchy Theorem

Theorem 19 (Hennie and Stearns (1966)) If f(n) is
proper, then

SPACE(f(n)) ( SPACE(f(n) log f(n)).

Corollary 20 L ( PSPACE.
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The Reachability Method

• The computation of a time-bounded TM can be
represented by directional transitions between
configurations.

• The reachability method constructs a directed graph
with all the TM configurations as its nodes and edges
connecting two nodes if one yields the other.

• The start node representing the initial configuration has
zero in degree.

• When the TM is nondeterministic, a node may have an
out degree greater than one.
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Illustration of the Reachability Method

yes

yes
Initial

configuration
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Relations between Complexity Classes

Theorem 21 Suppose f(n) is proper. Then

1. SPACE(f(n)) ⊆ NSPACE(f(n)),
TIME(f(n)) ⊆ NTIME(f(n)).

2. NTIME(f(n)) ⊆ SPACE(f(n)).

3. NSPACE(f(n)) ⊆ TIME(klog n+f(n)).

• Proof of 2:

– Explore the computation tree of the NTM for “yes.”

– Specifically, generate a f(n)-bit sequence denoting
the nondeterministic choices over f(n) steps.
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Proof of Theorem 21(2)

• (continued)

– Simulate the NTM based on the choices.

– Recycle the space and then repeat the above steps
until a “yes” is encountered or the tree is exhausted.

– Each path simulation consumes at most O(f(n))
space because it takes O(f(n)) time.

– The total space is O(f(n)) as space is recycled.
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Proof of Theorem 21(3)

• Let k-string NTM

M = (K, Σ, ∆, s)

with input and output decide L ∈ NSPACE(f(n)).

• Use the reachability method on the configuration graph
of M on input x of length n.

• A configuration is a (2k + 1)-tuple

(q, w1, u1, w2, u2, . . . , wk, uk).
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Proof of Theorem 21(3) (continued)

• We only care about

(q, i, w2, u2, . . . , wk−1, uk−1),

where i is an integer between 0 and n for the position of
the first cursor.

• The number of configurations is therefore at most

|K| × (n + 1)× |Σ|(2k−4)f(n) = O(clog n+f(n)
1 ) (2)

for some c1, which depends on M .

• Add edges to the configuration graph based on M ’s
transition function.
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Proof of Theorem 21(3) (concluded)

• x ∈ L ⇔ there is a path in the configuration graph from
the initial configuration to a configuration of the form
(“yes”, i, . . .) [there may be many of them].

• The problem is therefore that of reachability on a
graph with O(clog n+f(n)

1 ) nodes.

• It is in TIME(clog n+f(n)) for some c because
reachability is in TIME(nk) for some k and

[
c
log n+f(n)
1

]k

= (ck
1)log n+f(n).
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The Grand Chain of Inclusions

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

• By Corollary 20 (p. 189), we know L ( PSPACE.

• The chain must break somewhere between L and
PSPACE.

• It is suspected that all four inclusions are proper.

• But there are no proofs yet.a

aCarl Friedrich Gauss (1777–1855), “I could easily lay down a mul-

titude of such propositions, which one could neither prove nor dispose

of.”
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Nondeterministic Space and Deterministic Space

• By Theorem 5 (p. 95),

NTIME(f(n)) ⊆ TIME(cf(n)),

an exponential gap.

• There is no proof that the exponential gap is inherent,
however.

• How about NSPACE vs. SPACE?

• Surprisingly, the relation is only quadratic, a
polynomial, by Savitch’s theorem.
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Savitch’s Theorem

Theorem 22 (Savitch (1970))

reachability ∈ SPACE(log2 n).

• Let G be a graph with n nodes.

• For i ≥ 0, let
PATH(x, y, i)

mean there is a path from node x to node y of length at
most 2i.

• There is a path from x to y if and only if
PATH(x, y, dlog ne) holds.
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The Proof (continued)

• For i > 0, PATH(x, y, i) if and only if there exists a z

such that PATH(x, z, i− 1) and PATH(z, y, i− 1).

• For PATH(x, y, 0), check the input graph or if x = y.

• Compute PATH(x, y, dlog ne) with a depth-first search
on a graph with nodes (x, y, i)s (see next page).

• Like stacks in recursive calls, we keep only the current
path of (x, y, i)s.

• The space requirement is proportional to the depth of
the tree, dlog ne.
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• Depth is dlog ne, and each node (x, y, i) needs space
O(log n).

• The total space is O(log2 n).
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The Proof (concluded): Algorithm for PATH(x, y, i)
1: if i = 0 then

2: if x = y or (x, y) ∈ G then

3: return true;

4: else

5: return false;

6: end if

7: else

8: for z = 1, 2, . . . , n do

9: if PATH(x, z, i− 1) and PATH(z, y, i− 1) then

10: return true;

11: end if

12: end for

13: return false;

14: end if
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The Relation between Nondeterministic Space and
Deterministic Space Only Quadratic

Corollary 23 Let f(n) ≥ log n be proper. Then

NSPACE(f(n)) ⊆ SPACE(f2(n)).

• Apply Savitch’s theorem to the configuration graph of
the NTM on the input.

• From p. 195, the configuration graph has O(cf(n))
nodes; hence each node takes space O(f(n)).

• But if we construct explicitly the whole graph before
applying Savitch’s theorem, we get O(cf(n)) space!
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The Proof (continued)

• The way out is not to generate the graph at all.

• Instead, keep the graph implicit.

• We check for connectedness only when i = 0, by
examining the input string.

• There, given configurations x and y, we go over the
Turing machine’s program to determine if there is an
instruction that can turn x into y in one step.a

aThanks to a lively class discussion on October 15, 2003.
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The Proof (concluded)

• The z variable in the algorithm on p. 202 simply runs
through all possible valid configurations.

– Let z = 0, 1, . . . , O(cf(n)).

– Make sure z is a valid configuration before using it in
the recursive calls.a

• Each z has length O(f(n)) by Eq. (2) on p. 195.
aThanks to a lively class discussion on October 13, 2004.
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Implications of Savitch’s Theorem

• PSPACE = NPSPACE.

• Nondeterminism is less powerful with respect to space.

• Nondeterminism may be very powerful with respect to
time as it is not known if P = NP.
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Nondeterministic Space Is Closed under Complement

• Closure under complement is trivially true for
deterministic complexity classes (p. 182).

• It is known thata

coNSPACE(f(n)) = NSPACE(f(n)). (3)

• So

coNL = NL,

coNPSPACE = NPSPACE.

• But there are still no hints of coNP = NP.
aSzelepscényi (1987) and Immerman (1988).
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Reductions and Completeness
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Degrees of Difficulty

• When is a problem more difficult than another?

• B reduces to A if there is a transformation R which for
every input x of B yields an equivalent input R(x) of A.

– The answer to x for B is the same as the answer to
R(x) for A.

– There must be restrictions on the complexity of
computing R.

– Otherwise, R(x) might as well solve B.

∗ E.g., R(x) = “yes” if and only if x ∈ B!
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Degrees of Difficulty (concluded)

• Problem A is at least as hard as problem B if B reduces
to A.

• This makes intuitive sense: If A is able to solve your
problem B, then A must be at least as hard.
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Reduction

x yes/noR(x)
R

algorithm
for A

Solving problem B by calling the algorithm for problem once
and without further processing its answer.
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Commentsa

• Suppose B reduces to A via a transformation R.

• The input x is an instance of B.

• The output R(x) is an instance of A.

• R(x) may not span all possible instances of A.

• So some instances of A may never appear in the
reduction.

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29,

2003.
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Reduction between Languages

• Language L1 is reducible to L2 if there is a function R

computable by a deterministic TM in space O(log n).

• Furthermore, for all inputs x, x ∈ L1 if and only if
R(x) ∈ L2.

• R is said to be a (Karp) reduction from L1 to L2.

• Note that by Theorem 21 (p. 192), R runs in polynomial
time.

• Suppose R is a reduction from L1 to L2.

• Then solving “R(x) ∈ L2” is an algorithm for solving
“x ∈ L1.”
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A Paradox?

• Degree of difficulty is not defined in terms of absolute
complexity.

• So a language B ∈ TIME(n99) may be “easier” than a
language A ∈ TIME(n3).

• This happens when B is reducible to A.

• But isn’t this a contradiction when B 6∈ TIME(n98)?

• That is, how can a problem requiring n33 time be
reducible to a problem solvable in n3 time?
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A Paradox? (concluded)

• The so-called contradiction does not hold.

• When we solve the problem “x ∈ B?” with “R(x) ∈ A?”,
we must consider the time spent by R(x) and its length
|R(x) |.

• If |R(x) | = Ω(n33), then the time of answering
“R(x) ∈ A?” becomes Ω((n33)3) = Ω(n99).

• Suppose, on the other hand, that |R(x) | = o(n33).

• Then R(x) must run in time Ω(n99).

• In either case, there is no contradiction.
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hamiltonian path

• A Hamiltonian path of a graph is a path that visits
every node of the graph exactly once.

• Suppose graph G has n nodes: 1, 2, . . . , n.

• A Hamiltonian path can be expressed as a permutation
π of { 1, 2, . . . , n } such that

– π(i) = j means the ith position is occupied by node j.

– (π(i), π(i + 1)) ∈ G for i = 1, 2, . . . , n− 1.

• hamiltonian path asks if a graph has a Hamiltonian
path.
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Reduction of hamiltonian path to sat

• Given a graph G, we shall construct a CNF R(G) such
that R(G) is satisfiable if and only if G has a
Hamiltonian path.

• R(G) has n2 boolean variables xij , 1 ≤ i, j ≤ n.

• xij means

the ith position in the Hamiltonian path is
occupied by node j.
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1

2
3

4

5
6

78
9

x12 = x21 = x34 = x45 = x53 = x69 = x76 = x88 = x97 = 1.
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The Clauses of R(G) and Their Intended Meanings

1. Each node j must appear in the path.

• x1j ∨ x2j ∨ · · · ∨ xnj for each j.

2. No node j appears twice in the path.

• ¬xij ∨ ¬xkj for all i, j, k with i 6= k.

3. Every position i on the path must be occupied.

• xi1 ∨ xi2 ∨ · · · ∨ xin for each i.

4. No two nodes j and k occupy the same position in the path.

• ¬xij ∨ ¬xik for all i, j, k with j 6= k.

5. Nonadjacent nodes i and j cannot be adjacent in the path.

• ¬xki ∨ ¬xk+1,j for all (i, j) 6∈ G and k = 1, 2, . . . , n− 1.
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The Proof

• R(G) contains O(n3) clauses.

• R(G) can be computed efficiently (simple exercise).

• Suppose T |= R(G).

• From Clauses of 1 and 2, for each node j there is a
unique position i such that T |= xij .

• From Clauses of 3 and 4, for each position i there is a
unique node j such that T |= xij .

• So there is a permutation π of the nodes such that
π(i) = j if and only if T |= xij .
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The Proof (concluded)

• Clauses of 5 furthermore guarantees that
(π(1), π(2), . . . , π(n)) is a Hamiltonian path.

• Conversely, suppose G has a Hamiltonian path

(π(1), π(2), . . . , π(n)),

where π is a permutation.

• Clearly, the truth assignment

T (xij) = true if and only if π(i) = j

satisfies all clauses of R(G).
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A Commenta

• An answer to “Is R(G) satisfiable?” does answer “Is G

Hamiltonian?”

• But a positive answer does not give a Hamiltonian path
for G.

– Providing witness is not a requirement of reduction.

• A positive answer to “Is R(G) satisfiable?” plus a
satisfying truth assignment does provide us with a
Hamiltonian path for G.

aContributed by Ms. Amy Liu (J94922016) on May 29, 2006.
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