Some Boolean Functions Need Exponential Circuits ${ }^{a}$

Theorem 15 (Shannon (1949)) For any $n \geq 2$, there is an n-ary boolean function f such that no boolean circuits with $2^{n} /(2 n)$ or fewer gates can compute it.

- There are $2^{2^{n}}$ different n-ary boolean functions (see p. 159).
- So it suffices to prove that the number of boolean circuits with $2^{n} /(2 n)$ or fewer gates is less than $2^{2^{n}}$.

[^0]
The Proof (concluded)

- There are at most $\left((n+5) \times m^{2}\right)^{m}$ boolean circuits with m or fewer gates (see next page).
- But $\left((n+5) \times m^{2}\right)^{m}<2^{2^{n}}$ when $m=2^{n} /(2 n)$:

$$
\begin{aligned}
& m \log _{2}\left((n+5) \times m^{2}\right) \\
= & 2^{n}\left(1-\frac{\log _{2} \frac{4 n^{2}}{n+5}}{2 n}\right) \\
< & 2^{n}
\end{aligned}
$$

for $n \geq 2$.

Comments

- The lower bound is rather tight because an upper bound is $n 2^{n}$ (p. 160).
- In the proof, we counted the number of circuits.
- Some circuits may not be valid at all.
- Others may compute the same boolean functions.
- Both are fine because we only need an upper bound.
- We do not need to consider the outdoing edges because they have been counted in the incoming edges.

Relations between Complexity Classes

Proper (Complexity) Functions

- We say that $f: \mathbb{N} \rightarrow \mathbb{N}$ is a proper (complexity) function if the following hold:
- f is nondecreasing.
- There is a k-string TM M_{f} such that

$$
M_{f}(x)=\sqcap^{f(|x|)} \text { for any } x .^{\text {a }}
$$

- M_{f} halts after $O(|x|+f(|x|))$ steps.
- M_{f} uses $O(f(|x|))$ space besides its input x.
- M_{f} 's behavior depends only on $|x|$ not x 's contents.
- M_{f} 's running time is basically bounded by $f(n)$.
${ }^{\text {a }}$ This point will become clear in Proposition 16 on p. 178.

Examples of Proper Functions

- Most "reasonable" functions are proper: $c,\lceil\log n\rceil$, polynomials of $n, 2^{n}, \sqrt{n}, n$!, etc.
- If f and g are proper, then so are $f+g, f g$, and 2^{g}.
- Nonproper functions when serving as the time bounds for complexity classes spoil "the theory building."
- For example, $\operatorname{TIME}(f(n))=\operatorname{TIME}\left(2^{f(n)}\right)$ for some recursive function f (the gap theorem). ${ }^{\text {a }}$
- Only proper functions f will be used in $\operatorname{TIME}(f(n))$, $\operatorname{SPACE}(f(n)), \operatorname{NTIME}(f(n))$, and $\operatorname{NSPACE}(f(n))$.
${ }^{\text {a }}$ Trakhtenbrot (1964); Borodin (1972).

Space-Bounded Computation and Proper Functions

- In the definition of space-bounded computations, the TMs are not required to halt at all.
- When the space is bounded by a proper function f, computations can be assumed to halt:
- Run the TM associated with f to produce an output of length $f(n)$ first.
- The space-bound computation must repeat a configuration if it runs for more than $c^{n+f(n)}$ steps for some c (p. 195).
- So we can count steps to prevent infinite loops.

Precise Turing Machines

- A TM M is precise if there are functions f and g such that for every $n \in \mathbb{N}$, for every x of length n, and for every computation path of M,
- M halts after precisely $f(n)$ steps, and
- All of its strings are of length precisely $g(n)$ at halting.
* If M is a TM with input and output, we exclude the first and the last strings.
- M can be deterministic or nondeterministic.

Precise TMs Are General

Proposition 16 Suppose a $T M^{a} M$ decides L within time (space) $f(n)$, where f is proper. Then there is a precise TM M^{\prime} which decides L in time $O(n+f(n))$ (space $O(f(n))$, respectively).

- M^{\prime} on input x first simulates the $\mathrm{TM} M_{f}$ associated with the proper function f on x.
- M_{f} 's output of length $f(|x|)$ will serve as a "yardstick" or an "alarm clock."

[^1]
Important Complexity Classes

- We write expressions like n^{k} to denote the union of all complexity classes, one for each value of k.
- For example,

$$
\operatorname{NTIME}\left(n^{k}\right)=\bigcup_{j>0} \operatorname{NTIME}\left(n^{j}\right)
$$

Important Complexity Classes (concluded)

$$
\begin{aligned}
\mathrm{P} & =\operatorname{TIME}\left(n^{k}\right), \\
\operatorname{NP} & =\operatorname{NTIME}\left(n^{k}\right), \\
\operatorname{PSPACE} & =\operatorname{SPACE}\left(n^{k}\right), \\
\operatorname{NPSPACE} & =\operatorname{NSPACE}\left(n^{k}\right), \\
\mathrm{E} & =\operatorname{TIME}\left(2^{k n}\right), \\
\mathrm{EXP} & =\operatorname{TIME}\left(2^{n^{k}}\right), \\
\mathrm{L} & =\operatorname{SPACE}(\log n), \\
\mathrm{NL} & =\operatorname{NSACE}(\log n) .
\end{aligned}
$$

Complements of Nondeterministic Classes

- From p. 136, we know R, RE, and coRE are distinct.
- coRE contains the complements of languages in RE, not the languages not in RE.
- Recall that the complement of L, denoted by \bar{L}, is the language $\Sigma^{*}-L$.
- SAT COMPLEMENT is the set of unsatisfiable boolean expressions.
- HAMILTONIAN PATH COMPLEMENT is the set of graphs without a Hamiltonian path.

The Co-Classes

- For any complexity class \mathcal{C}, coC denotes the class

$$
\{\bar{L}: L \in \mathcal{C}\} .
$$

- Clearly, if \mathcal{C} is a deterministic time or space complexity class, then $\mathcal{C}=c o \mathcal{C}$.
- They are said to be closed under complement.
- A deterministic TM deciding L can be converted to one that decides \bar{L} within the same time or space bound by reversing the "yes" and "no" states.
- Whether nondeterministic classes for time are closed under complement is not known (p. 85).

Comments

- Then coC is the class

$$
\{\bar{L}: L \in \mathcal{C}\} .
$$

- So $L \in \mathcal{C}$ if and only if $\bar{L} \in \mathrm{coC}$.
- But it is not true that $L \in \mathcal{C}$ if and only if $L \notin \operatorname{coC}$.
- coC is not defined as $\overline{\mathcal{C}}$.
- For example, suppose $\mathcal{C}=\{\{2,4,6,8,10, \ldots\}\}$.
- Then $\operatorname{coC}=\{\{1,3,5,7,9, \ldots\}\}$.
- $\operatorname{But} \overline{\mathcal{C}}=2^{\{1,2,3, \ldots\}^{*}}-\{\{2,4,6,8,10, \ldots\}\}$.

The Quantified Halting Problem

- Let $f(n) \geq n$ be proper.
- Define

$$
\begin{aligned}
H_{f} & =\{M ; x: M \text { accepts input } x \\
& \text { after at most } f(|x|) \text { steps }\}
\end{aligned}
$$

where M is deterministic.

- Assume the input is binary.

$H_{f} \in \operatorname{TIME}\left(f(n)^{3}\right)$

- For each input $M ; x$, we simulate M on x with an alarm clock of length $f(|x|)$.
- Use the single-string simulator (p. 65), the universal TM (p. 121), and the linear speedup theorem (p.71).
- Our simulator accepts M; x if and only if M accepts x before the alarm clock runs out.
- From p. 70, the total running time is $O\left(\ell_{M} k_{M}^{2} f(n)^{2}\right)$, where ℓ_{M} is the length to encode each symbol or state of M and k_{M} is M 's number of strings.
- As $\ell_{M} k_{M}^{2}=O(n)$, the running time is $O\left(f(n)^{3}\right)$, where the constant is independent of M.

$H_{f} \notin \operatorname{TIME}(f(\lfloor n / 2\rfloor))$

- Suppose TM $M_{H_{f}}$ decides H_{f} in time $f(\lfloor n / 2\rfloor)$.
- Consider machine $D_{f}(M)$:

$$
\text { if } M_{H_{f}}(M ; M)=\text { "yes" then "no" else "yes" }
$$

- D_{f} on input M runs in the same time as $M_{H_{f}}$ on input $M ; M$, i.e., in time $f\left(\left\lfloor\frac{2 n+1}{2}\right\rfloor\right)=f(n)$, where $n=|M|{ }^{\text {a }}$
${ }^{\text {a }}$ A student pointed out on October 6, 2004, that this estimation omits the time to write down $M ; M$.

The Proof (concluded)

- First,

$$
\begin{aligned}
& D_{f}\left(D_{f}\right)=\text { "yes" } \\
\Rightarrow & D_{f} ; D_{f} \notin H_{f} \\
\Rightarrow & D_{f} \text { does not accept } D_{f} \text { within time } f\left(\left|D_{f}\right|\right) \\
\Rightarrow & D_{f}\left(D_{f}\right)=\text { "no" }
\end{aligned}
$$

a contradiction

- Similarly, $D_{f}\left(D_{f}\right)=$ "no" $\Rightarrow D_{f}\left(D_{f}\right)=$ "yes."

The Time Hierarchy Theorem

Theorem 17 If $f(n) \geq n$ is proper, then

$$
\operatorname{TIME}(f(n)) \subsetneq \operatorname{TIME}\left(f(2 n+1)^{3}\right) .
$$

- The quantified halting problem makes it so.

Corollary $18 \mathrm{P} \subsetneq$ EXP.

- $\mathrm{P} \subseteq \operatorname{TIME}\left(2^{n}\right)$ because poly $(n) \leq 2^{n}$ for n large enough.
- But by Theorem 17 ,

$$
\operatorname{TIME}\left(2^{n}\right) \subsetneq \operatorname{TIME}\left(\left(2^{2 n+1}\right)^{3}\right) \subseteq \operatorname{TIME}\left(2^{n^{2}}\right) \subseteq \operatorname{EXP} .
$$

- So P \subsetneq EXP.

The Space Hierarchy Theorem

 Theorem 19 (Hennie and Stearns (1966)) If $f(n)$ is proper, then$$
\operatorname{SPACE}(f(n)) \subsetneq \operatorname{SPACE}(f(n) \log f(n)) .
$$

Corollary $20 \mathrm{~L} \subsetneq$ PSPACE.

The Reachability Method

- The computation of a time-bounded TM can be represented by directional transitions between configurations.
- The reachability method constructs a directed graph with all the TM configurations as its nodes and edges connecting two nodes if one yields the other.
- The start node representing the initial configuration has zero in degree.
- When the TM is nondeterministic, a node may have an out degree greater than one.

Illustration of the Reachability Method

Initial

yes

Relations between Complexity Classes

Theorem 21 Suppose $f(n)$ is proper. Then

1. $\operatorname{SPACE}(f(n)) \subseteq \operatorname{NSPACE}(f(n))$, $\operatorname{TIME}(f(n)) \subseteq \operatorname{NTIME}(f(n))$.
2. $\operatorname{NTIME}(f(n)) \subseteq \operatorname{SPACE}(f(n))$.
3. $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{TIME}\left(k^{\log n+f(n)}\right)$.

- Proof of 2 :
- Explore the computation tree of the NTM for "yes."
- Specifically, generate a $f(n)$-bit sequence denoting the nondeterministic choices over $f(n)$ steps.

Proof of Theorem 21(2)

- (continued)
- Simulate the NTM based on the choices.
- Recycle the space and then repeat the above steps until a "yes" is encountered or the tree is exhausted.
- Each path simulation consumes at most $O(f(n))$ space because it takes $O(f(n))$ time.
- The total space is $O(f(n))$ as space is recycled.

Proof of Theorem 21(3)

- Let k-string NTM

$$
M=(K, \Sigma, \Delta, s)
$$

with input and output decide $L \in \operatorname{NSPACE}(f(n))$.

- Use the reachability method on the configuration graph of M on input x of length n.
- A configuration is a $(2 k+1)$-tuple

$$
\left(q, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)
$$

Proof of Theorem 21(3) (continued)

- We only care about

$$
\left(q, i, w_{2}, u_{2}, \ldots, w_{k-1}, u_{k-1}\right)
$$

where i is an integer between 0 and n for the position of the first cursor.

- The number of configurations is therefore at most

$$
\begin{equation*}
|K| \times(n+1) \times|\Sigma|^{(2 k-4) f(n)}=O\left(c_{1}^{\log n+f(n)}\right) \tag{2}
\end{equation*}
$$

for some c_{1}, which depends on M.

- Add edges to the configuration graph based on M's transition function.

Proof of Theorem 21(3) (concluded)

- $x \in L \Leftrightarrow$ there is a path in the configuration graph from the initial configuration to a configuration of the form ("yes", i, \ldots) [there may be many of them].
- The problem is therefore that of REACHABILITY on a graph with $O\left(c_{1}^{\log n+f(n)}\right)$ nodes.
- It is in $\operatorname{TIME}\left(c^{\log n+f(n)}\right)$ for some c because REACHABILITY is in $\operatorname{TIME}\left(n^{k}\right)$ for some k and

$$
\left[c_{1}^{\log n+f(n)}\right]^{k}=\left(c_{1}^{k}\right)^{\log n+f(n)}
$$

The Grand Chain of Inclusions

$$
\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXP} .
$$

- By Corollary 20 (p. 189), we know L \subsetneq PSPACE.
- The chain must break somewhere between L and PSPACE.
- It is suspected that all four inclusions are proper.
- But there are no proofs yet. ${ }^{\text {a }}$

[^2]
Nondeterministic Space and Deterministic Space

- By Theorem 5 (p. 95),

$$
\operatorname{NTIME}(f(n)) \subseteq \operatorname{TIME}\left(c^{f(n)}\right)
$$

an exponential gap.

- There is no proof that the exponential gap is inherent, however.
- How about NSPACE vs. SPACE?
- Surprisingly, the relation is only quadratic, a polynomial, by Savitch's theorem.

Savitch's Theorem

Theorem 22 (Savitch (1970))

$$
\text { REACHABILITY } \in \operatorname{SPACE}\left(\log ^{2} n\right)
$$

- Let G be a graph with n nodes.
- For $i \geq 0$, let

$$
\operatorname{PATH}(x, y, i)
$$

mean there is a path from node x to node y of length at most 2^{i}.

- There is a path from x to y if and only if $\operatorname{PATH}(x, y,\lceil\log n\rceil)$ holds.

The Proof (continued)

- For $i>0, \operatorname{PATH}(x, y, i)$ if and only if there exists a z such that $\operatorname{PATH}(x, z, i-1)$ and $\operatorname{PATH}(z, y, i-1)$.
- For $\operatorname{PATH}(x, y, 0)$, check the input graph or if $x=y$.
- Compute $\operatorname{PATH}(x, y,\lceil\log n\rceil)$ with a depth-first search on a graph with nodes (x, y, i)s (see next page).
- Like stacks in recursive calls, we keep only the current path of (x, y, i) s.
- The space requirement is proportional to the depth of the tree, $\lceil\log n\rceil$.

- Depth is $\lceil\log n\rceil$, and each node (x, y, i) needs space $O(\log n)$.
- The total space is $O\left(\log ^{2} n\right)$.

The Proof (concluded): Algorithm for $\operatorname{PATH}(x, y, i)$
1: if $i=0$ then
2: if $x=y$ or $(x, y) \in G$ then
3: return true;
4: else
5: return false;
6: end if
7: else
8: \quad for $z=1,2, \ldots, n$ do
9: \quad if $\operatorname{PATH}(x, z, i-1)$ and $\operatorname{PATH}(z, y, i-1)$ then
10: return true;
11: end if
12: end for
13: return false;
14: end if

The Relation between Nondeterministic Space and Deterministic Space Only Quadratic

Corollary 23 Let $f(n) \geq \log n$ be proper. Then

$$
\operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}\left(f^{2}(n)\right)
$$

- Apply Savitch's theorem to the configuration graph of the NTM on the input.
- From p. 195, the configuration graph has $O\left(c^{f(n)}\right)$ nodes; hence each node takes space $O(f(n))$.
- But if we construct explicitly the whole graph before applying Savitch's theorem, we get $O\left(c^{f(n)}\right)$ space!

The Proof (continued)

- The way out is not to generate the graph at all.
- Instead, keep the graph implicit.
- We check for connectedness only when $i=0$, by examining the input string.
- There, given configurations x and y, we go over the Turing machine's program to determine if there is an instruction that can turn x into y in one step. ${ }^{\text {a }}$

[^3]
The Proof (concluded)

- The z variable in the algorithm on p. 202 simply runs through all possible valid configurations.
- Let $z=0,1, \ldots, O\left(c^{f(n)}\right)$.
- Make sure z is a valid configuration before using it in the recursive calls. ${ }^{\text {a }}$
- Each z has length $O(f(n))$ by Eq. (2) on p. 195.
${ }^{\text {a }}$ Thanks to a lively class discussion on October 13, 2004.

Implications of Savitch's Theorem

- $\operatorname{PSPACE}=$ NPSPACE .
- Nondeterminism is less powerful with respect to space.
- Nondeterminism may be very powerful with respect to time as it is not known if $\mathrm{P}=\mathrm{NP}$.

Nondeterministic Space Is Closed under Complement

- Closure under complement is trivially true for deterministic complexity classes (p. 182).
- It is known that ${ }^{\text {a }}$

$$
\begin{equation*}
\operatorname{coNSPACE}(f(n))=\operatorname{NSPACE}(f(n)) \tag{3}
\end{equation*}
$$

- So

$$
\begin{aligned}
\operatorname{coNL} & =\mathrm{NL} \\
\text { coNPSPACE } & =\text { NPSPACE. }
\end{aligned}
$$

- But there are still no hints of coNP = NP.

[^4]
Reductions and Completeness

Degrees of Difficulty

- When is a problem more difficult than another?
- B reduces to A if there is a transformation R which for every input x of B yields an equivalent input $R(x)$ of A .
- The answer to x for B is the same as the answer to $R(x)$ for A .
- There must be restrictions on the complexity of computing R.
- Otherwise, $R(x)$ might as well solve B .
* E.g., $R(x)=$ "yes" if and only if $x \in \mathrm{~B}$!

Degrees of Difficulty (concluded)

- Problem A is at least as hard as problem B if B reduces to A.
- This makes intuitive sense: If A is able to solve your problem B, then A must be at least as hard.

Reduction

Solving problem B by calling the algorithm for problem once and without further processing its answer.

Comments ${ }^{\text {a }}$

- Suppose B reduces to A via a transformation R.
- The input x is an instance of B .
- The output $R(x)$ is an instance of A .
- $R(x)$ may not span all possible instances of A .
- So some instances of A may never appear in the reduction.

[^5]
Reduction between Languages

- Language L_{1} is reducible to L_{2} if there is a function R computable by a deterministic TM in space $O(\log n)$.
- Furthermore, for all inputs $x, x \in L_{1}$ if and only if $R(x) \in L_{2}$.
- R is said to be a (Karp) reduction from L_{1} to L_{2}.
- Note that by Theorem 21 (p. 192), R runs in polynomial time.
- Suppose R is a reduction from L_{1} to L_{2}.
- Then solving " $R(x) \in L_{2}$ " is an algorithm for solving " $x \in L_{1}$."

A Paradox?

- Degree of difficulty is not defined in terms of absolute complexity.
- So a language $\mathrm{B} \in \operatorname{TIME}\left(n^{99}\right)$ may be "easier" than a language $\mathrm{A} \in \operatorname{TIME}\left(n^{3}\right)$.
- This happens when B is reducible to A .
- But isn't this a contradiction when $\mathrm{B} \notin \operatorname{TIME}\left(n^{98}\right)$?
- That is, how can a problem requiring n^{33} time be reducible to a problem solvable in n^{3} time?

A Paradox? (concluded)

- The so-called contradiction does not hold.
- When we solve the problem " $x \in \mathrm{~B}$?" with " $R(x) \in \mathrm{A}$?", we must consider the time spent by $R(x)$ and its length | $R(x) \mid$.
- If $|R(x)|=\Omega\left(n^{33}\right)$, then the time of answering
" $R(x) \in$ A?" becomes $\Omega\left(\left(n^{33}\right)^{3}\right)=\Omega\left(n^{99}\right)$.
- Suppose, on the other hand, that $|R(x)|=o\left(n^{33}\right)$.
- Then $R(x)$ must run in time $\Omega\left(n^{99}\right)$.
- In either case, there is no contradiction.

HAMILTONIAN PATH

- A Hamiltonian path of a graph is a path that visits every node of the graph exactly once.
- Suppose graph G has n nodes: $1,2, \ldots, n$.
- A Hamiltonian path can be expressed as a permutation π of $\{1,2, \ldots, n\}$ such that $-\pi(i)=j$ means the i th position is occupied by node j. $-(\pi(i), \pi(i+1)) \in G$ for $i=1,2, \ldots, n-1$.
- hamiltonian path asks if a graph has a Hamiltonian path.

Reduction of HAMILTONIAN PATH to SAT

- Given a graph G, we shall construct a CNF $R(G)$ such that $R(G)$ is satisfiable if and only if G has a Hamiltonian path.
- $R(G)$ has n^{2} boolean variables $x_{i j}, 1 \leq i, j \leq n$.
- $x_{i j}$ means
the i th position in the Hamiltonian path is occupied by node j.

The Clauses of $R(G)$ and Their Intended Meanings

1. Each node j must appear in the path.

- $x_{1 j} \vee x_{2 j} \vee \cdots \vee x_{n j}$ for each j.

2. No node j appears twice in the path.

- $\neg x_{i j} \vee \neg x_{k j}$ for all i, j, k with $i \neq k$.

3. Every position i on the path must be occupied.

- $x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n}$ for each i.

4. No two nodes j and k occupy the same position in the path.

- $\neg x_{i j} \vee \neg x_{i k}$ for all i, j, k with $j \neq k$.

5. Nonadjacent nodes i and j cannot be adjacent in the path.

- $\neg x_{k i} \vee \neg x_{k+1, j}$ for all $(i, j) \notin G$ and $k=1,2, \ldots, n-1$.

The Proof

- $R(G)$ contains $O\left(n^{3}\right)$ clauses.
- $R(G)$ can be computed efficiently (simple exercise).
- Suppose $T \models R(G)$.
- From Clauses of 1 and 2 , for each node j there is a unique position i such that $T \models x_{i j}$.
- From Clauses of 3 and 4 , for each position i there is a unique node j such that $T \models x_{i j}$.
- So there is a permutation π of the nodes such that $\pi(i)=j$ if and only if $T \models x_{i j}$.

The Proof (concluded)

- Clauses of 5 furthermore guarantees that $(\pi(1), \pi(2), \ldots, \pi(n))$ is a Hamiltonian path.
- Conversely, suppose G has a Hamiltonian path

$$
(\pi(1), \pi(2), \ldots, \pi(n))
$$

where π is a permutation.

- Clearly, the truth assignment

$$
T\left(x_{i j}\right)=\text { true if and only if } \pi(i)=j
$$

satisfies all clauses of $R(G)$.

A Comment ${ }^{\text {a }}$

- An answer to "Is $R(G)$ satisfiable?" does answer "Is G Hamiltonian?"
- But a positive answer does not give a Hamiltonian path for G.
- Providing witness is not a requirement of reduction.
- A positive answer to "Is $R(G)$ satisfiable?" plus a satisfying truth assignment does provide us with a Hamiltonian path for G.

[^6]
[^0]: ${ }^{\text {a }}$ Can be strengthened to "almost all boolean functions ..."

[^1]: ${ }^{\text {a }}$ It can be deterministic or nondeterministic.

[^2]: ${ }^{\text {a }}$ Carl Friedrich Gauss (1777-1855), "I could easily lay down a multitude of such propositions, which one could neither prove nor dispose of."

[^3]: ${ }^{\text {a }}$ Thanks to a lively class discussion on October 15, 2003.

[^4]: ${ }^{\text {a S Selepscényi (1987) and Immerman (1988). }}$

[^5]: ${ }^{\text {a }}$ Contributed by Mr. Ming-Feng Tsai (D92922003) on October 29, 2003.

[^6]: ${ }^{\text {a }}$ Contributed by Ms. Amy Liu (J94922016) on May 29, 2006.

