Some Boolean Functions Need Exponential Circuits^a Theorem 15 (Shannon (1949)) For any $n \ge 2$, there is an n-ary boolean function f such that no boolean circuits with $2^n/(2n)$ or fewer gates can compute it.

- There are 2^{2^n} different *n*-ary boolean functions (see p. 159).
- So it suffices to prove that the number of boolean circuits with $2^n/(2n)$ or fewer gates is less than 2^{2^n} .

^aCan be strengthened to "almost all boolean functions . . ."

The Proof (concluded)

- There are at most $((n+5) \times m^2)^m$ boolean circuits with m or fewer gates (see next page).
- But $((n+5) \times m^2)^m < 2^{2^n}$ when $m = 2^n/(2n)$:

$$m \log_2((n+5) \times m^2)$$

$$= 2^n \left(1 - \frac{\log_2 \frac{4n^2}{n+5}}{2n}\right)$$

$$< 2^n$$

for $n \geq 2$.

Claude Elwood Shannon (1916–2001)

Comments

- The lower bound is rather tight because an upper bound is $n2^n$ (p. 160).
- In the proof, we counted the number of circuits.
- Some circuits may not be valid at all.
- Others may compute the same boolean functions.
- Both are fine because we only need an upper bound.
- We do not need to consider the outdoing edges because they have been counted in the incoming edges.

Relations between Complexity Classes

Proper (Complexity) Functions

- We say that f : N → N is a proper (complexity)
 function if the following hold:
 - -f is nondecreasing.
 - There is a k-string TM M_f such that $M_f(x) = \Box^{f(|x|)}$ for any x.^a
 - M_f halts after O(|x| + f(|x|)) steps.
 - M_f uses O(f(|x|)) space besides its input x.
- M_f 's behavior depends only on |x| not x's contents.
- M_f 's running time is basically bounded by f(n).

^aThis point will become clear in Proposition 16 on p. 178.

Examples of Proper Functions

- Most "reasonable" functions are proper: c, $\lceil \log n \rceil$, polynomials of n, 2^n , \sqrt{n} , n!, etc.
- If f and g are proper, then so are f + g, fg, and 2^g .
- Nonproper functions when serving as the time bounds for complexity classes spoil "the theory building."
 - For example, $\text{TIME}(f(n)) = \text{TIME}(2^{f(n)})$ for some recursive function f (the **gap theorem**).^a
- Only proper functions f will be used in TIME(f(n)), SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

^aTrakhtenbrot (1964); Borodin (1972).

Space-Bounded Computation and Proper Functions

- In the definition of *space-bounded* computations, the TMs are not required to halt at all.
- When the space is bounded by a proper function f, computations can be assumed to halt:
 - Run the TM associated with f to produce an output of length f(n) first.
 - The space-bound computation must repeat a configuration if it runs for more than $c^{n+f(n)}$ steps for some c (p. 195).
 - So we can count steps to prevent infinite loops.

Precise Turing Machines

- A TM M is precise if there are functions f and g such that for every n ∈ N, for every x of length n, and for every computation path of M,
 - M halts after precisely f(n) steps, and
 - All of its strings are of length precisely g(n) at halting.
 - * If M is a TM with input and output, we exclude the first and the last strings.
- M can be deterministic or nondeterministic.

Precise TMs Are General

Proposition 16 Suppose a TM^{a} M decides L within time (space) f(n), where f is proper. Then there is a precise TM M' which decides L in time O(n + f(n)) (space O(f(n)), respectively).

- M' on input x first simulates the TM M_f associated with the proper function f on x.
- M_f 's output of length f(|x|) will serve as a "yardstick" or an "alarm clock."

^aIt can be deterministic or nondeterministic.

Important Complexity Classes

- We write expressions like n^k to denote the union of all complexity classes, one for each value of k.
- For example,

$$\operatorname{NTIME}(n^k) = \bigcup_{j>0} \operatorname{NTIME}(n^j).$$

Important Complexity Classes (concluded)

 $P = TIME(n^{k}),$ $NP = NTIME(n^{k}),$ $PSPACE = SPACE(n^{k}),$ $NPSPACE = NSPACE(n^{k}),$ $E = TIME(2^{kn}),$ $EXP = TIME(2^{n^{k}}),$ $L = SPACE(\log n),$ $NL = NSPACE(\log n).$

Complements of Nondeterministic Classes

- From p. 136, we know R, RE, and coRE are distinct.
 - coRE contains the complements of languages in RE, not the languages not in RE.
- Recall that the **complement** of L, denoted by \overline{L} , is the language $\Sigma^* L$.
 - SAT COMPLEMENT is the set of unsatisfiable boolean expressions.
 - HAMILTONIAN PATH COMPLEMENT is the set of graphs without a Hamiltonian path.

The Co-Classes

• For any complexity class \mathcal{C} , $\mathrm{co}\mathcal{C}$ denotes the class

$$\{\bar{L}: L \in \mathcal{C}\}.$$

- Clearly, if C is a *deterministic* time or space *complexity* class, then C = coC.
 - They are said to be **closed under complement**.
 - A deterministic TM deciding L can be converted to one that decides \overline{L} within the same time or space bound by reversing the "yes" and "no" states.
- Whether nondeterministic classes for time are closed under complement is not known (p. 85).

Comments

• Then coC is the class

$$\{\overline{L}: L \in \mathcal{C}\}.$$

- So $L \in \mathcal{C}$ if and only if $\overline{L} \in \operatorname{co}\mathcal{C}$.

- But it is *not* true that $L \in \mathcal{C}$ if and only if $L \notin \operatorname{co}\mathcal{C}$. - $\operatorname{co}\mathcal{C}$ is not defined as $\overline{\mathcal{C}}$.
- For example, suppose $C = \{\{2, 4, 6, 8, 10, \ldots\}\}.$
- Then $\operatorname{co}\mathcal{C} = \{\{1, 3, 5, 7, 9, \ldots\}\}.$
- But $\overline{C} = 2^{\{1,2,3,\ldots\}^*} \{\{2,4,6,8,10,\ldots\}\}.$

The Quantified Halting Problem

- Let $f(n) \ge n$ be proper.
- Define

 $H_f = \{M; x : M \text{ accepts input } x \\ \text{after at most } f(|x|) \text{ steps} \},$

where M is deterministic.

• Assume the input is binary.

$H_f \in \mathsf{TIME}(f(n)^3)$

- For each input M; x, we simulate M on x with an alarm clock of length f(|x|).
 - Use the single-string simulator (p. 65), the universal TM (p. 121), and the linear speedup theorem (p. 71).
 - Our simulator accepts M; x if and only if M accepts x before the alarm clock runs out.
- From p. 70, the total running time is $O(\ell_M k_M^2 f(n)^2)$, where ℓ_M is the length to encode each symbol or state of M and k_M is M's number of strings.
- As $\ell_M k_M^2 = O(n)$, the running time is $O(f(n)^3)$, where the constant is independent of M.

$H_f \not\in \mathsf{TIME}(f(\lfloor n/2 \rfloor))$

• Suppose TM M_{H_f} decides H_f in time $f(\lfloor n/2 \rfloor)$.

• Consider machine
$$D_f(M)$$
:

if $M_{H_f}(M; M) =$ "yes" then "no" else "yes"

• D_f on input M runs in the same time as M_{H_f} on input M; M, i.e., in time $f(\lfloor \frac{2n+1}{2} \rfloor) = f(n)$, where $n = |M|.^a$

^aA student pointed out on October 6, 2004, that this estimation omits the time to write down M; M.

The Proof (concluded)

• First,

$$D_f(D_f) =$$
 "yes"

$$\Rightarrow \quad D_f; D_f \not\in H_f$$

 $\Rightarrow D_f$ does not accept D_f within time $f(|D_f|)$

$$\Rightarrow D_f(D_f) = \text{``no''}$$

a contradiction

• Similarly, $D_f(D_f) =$ "no" $\Rightarrow D_f(D_f) =$ "yes."

The Time Hierarchy Theorem

Theorem 17 If $f(n) \ge n$ is proper, then

 $\text{TIME}(f(n)) \subsetneq \text{TIME}(f(2n+1)^3).$

• The quantified halting problem makes it so.

Corollary 18 $P \subsetneq EXP$.

- $\mathbf{P} \subseteq \text{TIME}(2^n)$ because $\text{poly}(n) \leq 2^n$ for n large enough.
- But by Theorem 17,

 $\text{TIME}(2^n) \subsetneq \text{TIME}((2^{2n+1})^3) \subseteq \text{TIME}(2^{n^2}) \subseteq \text{EXP}.$

• So $P \subsetneq EXP$.

The Space Hierarchy Theorem **Theorem 19 (Hennie and Stearns (1966))** If f(n) is proper, then

 $SPACE(f(n)) \subsetneq SPACE(f(n) \log f(n)).$

Corollary 20 $L \subsetneq PSPACE$.

The Reachability Method

- The computation of a time-bounded TM can be represented by directional transitions between configurations.
- The reachability method constructs a directed graph with all the TM configurations as its nodes and edges connecting two nodes if one yields the other.
- The start node representing the initial configuration has zero in degree.
- When the TM is nondeterministic, a node may have an out degree greater than one.

Illustration of the Reachability Method

Theorem 21 Suppose f(n) is proper. Then

- 1. $SPACE(f(n)) \subseteq NSPACE(f(n)),$ $TIME(f(n)) \subseteq NTIME(f(n)).$
- 2. NTIME $(f(n)) \subseteq SPACE(f(n))$.
- 3. NSPACE $(f(n)) \subseteq \text{TIME}(k^{\log n + f(n)}).$
- Proof of 2:
 - Explore the computation *tree* of the NTM for "yes."
 - Specifically, generate a f(n)-bit sequence denoting the nondeterministic choices over f(n) steps.

Proof of Theorem 21(2)

- (continued)
 - Simulate the NTM based on the choices.
 - Recycle the space and then repeat the above steps until a "yes" is encountered or the tree is exhausted.
 - Each path simulation consumes at most O(f(n))space because it takes O(f(n)) time.
 - The total space is O(f(n)) as space is recycled.

Proof of Theorem 21(3)

• Let *k*-string NTM

$$M = (K, \Sigma, \Delta, s)$$

with input and output decide $L \in \text{NSPACE}(f(n))$.

- Use the reachability method on the configuration graph of M on input x of length n.
- A configuration is a (2k+1)-tuple

$$(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k).$$

Proof of Theorem 21(3) (continued)

• We only care about

$$(q, i, w_2, u_2, \ldots, w_{k-1}, u_{k-1}),$$

where i is an integer between 0 and n for the position of the first cursor.

• The number of configurations is therefore at most

$$|K| \times (n+1) \times |\Sigma|^{(2k-4)f(n)} = O(c_1^{\log n + f(n)}) \quad (2)$$

for some c_1 , which depends on M.

• Add edges to the configuration graph based on M's transition function.

Proof of Theorem 21(3) (concluded)

- x ∈ L ⇔ there is a path in the configuration graph from the initial configuration to a configuration of the form ("yes", i,...) [there may be many of them].
- The problem is therefore that of REACHABILITY on a graph with $O(c_1^{\log n + f(n)})$ nodes.
- It is in $\text{TIME}(c^{\log n + f(n)})$ for some c because REACHABILITY is in $\text{TIME}(n^k)$ for some k and

$$\left[c_1^{\log n + f(n)}\right]^k = (c_1^k)^{\log n + f(n)}$$

The Grand Chain of Inclusions $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP.$

- By Corollary 20 (p. 189), we know $L \subsetneq PSPACE$.
- The chain must break somewhere between L and PSPACE.
- It is suspected that all four inclusions are proper.
- But there are no proofs yet.^a

^aCarl Friedrich Gauss (1777–1855), "I could easily lay down a multitude of such propositions, which one could neither prove nor dispose of." Nondeterministic Space and Deterministic Space

• By Theorem 5 (p. 95),

```
\operatorname{NTIME}(f(n)) \subseteq \operatorname{TIME}(c^{f(n)}),
```

an exponential gap.

- There is no proof that the exponential gap is inherent, however.
- How about NSPACE vs. SPACE?
- Surprisingly, the relation is only quadratic, a polynomial, by Savitch's theorem.

Savitch's Theorem

```
Theorem 22 (Savitch (1970))
```

REACHABILITY \in SPACE $(\log^2 n)$.

- Let G be a graph with n nodes.
- For $i \ge 0$, let

PATH(x, y, i)

mean there is a path from node x to node y of length at most 2^i .

 There is a path from x to y if and only if PATH(x, y, ⌈log n⌉) holds.

The Proof (continued)

- For i > 0, PATH(x, y, i) if and only if there exists a z such that PATH(x, z, i 1) and PATH(z, y, i 1).
- For PATH(x, y, 0), check the input graph or if x = y.
- Compute $PATH(x, y, \lceil \log n \rceil)$ with a depth-first search on a graph with nodes (x, y, i)s (see next page).
- Like stacks in recursive calls, we keep only the current path of (x, y, i)s.
- The space requirement is proportional to the depth of the tree, $\lceil \log n \rceil$.

• The total space is $O(\log^2 n)$.

The Proof (concluded): Algorithm for PATH(x, y, i)1: **if** i = 0 **then** if x = y or $(x, y) \in G$ then 2: return true; 3: else 4: 5: return false; end if 6: 7: else for z = 1, 2, ..., n do 8: if PATH(x, z, i-1) and PATH(z, y, i-1) then 9: return true; 10: end if 11: end for 12:return false; 13:14: end if

The Relation between Nondeterministic Space and Deterministic Space Only Quadratic

Corollary 23 Let $f(n) \ge \log n$ be proper. Then

 $NSPACE(f(n)) \subseteq SPACE(f^2(n)).$

- Apply Savitch's theorem to the configuration graph of the NTM on the input.
- From p. 195, the configuration graph has $O(c^{f(n)})$ nodes; hence each node takes space O(f(n)).
- But if we construct explicitly the whole graph before applying Savitch's theorem, we get $O(c^{f(n)})$ space!

The Proof (continued)

- The way out is *not* to generate the graph at all.
- Instead, keep the graph implicit.
- We check for connectedness only when i = 0, by examining the input string.
- There, given configurations x and y, we go over the Turing machine's program to determine if there is an instruction that can turn x into y in one step.^a

^aThanks to a lively class discussion on October 15, 2003.

The Proof (concluded)

- The z variable in the algorithm on p. 202 simply runs through all possible valid configurations.
 - Let $z = 0, 1, \dots, O(c^{f(n)})$.
 - Make sure z is a valid configuration before using it in the recursive calls.^a
- Each z has length O(f(n)) by Eq. (2) on p. 195.

^aThanks to a lively class discussion on October 13, 2004.

Implications of Savitch's Theorem

- PSPACE = NPSPACE.
- Nondeterminism is less powerful with respect to space.
- Nondeterminism may be very powerful with respect to time as it is not known if P = NP.

Nondeterministic Space Is Closed under Complement

- Closure under complement is trivially true for deterministic complexity classes (p. 182).
- It is known that^a

$$coNSPACE(f(n)) = NSPACE(f(n)).$$
 (3)

$$coNL = NL,$$

 $coNPSPACE = NPSPACE.$

• But there are still no hints of coNP = NP.

^aSzelepscényi (1987) and Immerman (1988).

Reductions and Completeness

Degrees of Difficulty

- When is a problem more difficult than another?
- B reduces to A if there is a transformation R which for every input x of B yields an equivalent input R(x) of A.
 - The answer to x for B is the same as the answer to R(x) for A.
 - There must be restrictions on the complexity of computing R.
 - Otherwise, R(x) might as well solve B.
 - * E.g., R(x) = "yes" if and only if $x \in B!$

Degrees of Difficulty (concluded)

- Problem A is at least as hard as problem B if B reduces to A.
- This makes intuitive sense: If A is able to solve your problem B, then A must be at least as hard.

$\mathsf{Comments}^{\mathrm{a}}$

- Suppose B reduces to A via a transformation R.
- The input x is an instance of B.
- The output R(x) is an instance of A.
- R(x) may not span all possible instances of A.
- So some instances of A may never appear in the reduction.

^aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29, 2003.

Reduction between Languages

- Language L_1 is **reducible to** L_2 if there is a function R computable by a deterministic TM in space $O(\log n)$.
- Furthermore, for all inputs $x, x \in L_1$ if and only if $R(x) \in L_2$.
- R is said to be a (**Karp**) reduction from L_1 to L_2 .
- Note that by Theorem 21 (p. 192), R runs in polynomial time.
- Suppose R is a reduction from L_1 to L_2 .
- Then solving "R(x) ∈ L₂" is an algorithm for solving "x ∈ L₁."

A Paradox?

- Degree of difficulty is not defined in terms of *absolute* complexity.
- So a language $B \in TIME(n^{99})$ may be "easier" than a language $A \in TIME(n^3)$.
- This happens when B is reducible to A.
- But isn't this a contradiction when $B \notin TIME(n^{98})$?
- That is, how can a problem requiring n^{33} time be reducible to a problem solvable in n^3 time?

A Paradox? (concluded)

- The so-called contradiction does not hold.
- When we solve the problem "x ∈ B?" with "R(x) ∈ A?", we must consider the time spent by R(x) and its length | R(x) |.
- If $|R(x)| = \Omega(n^{33})$, then the time of answering " $R(x) \in A$?" becomes $\Omega((n^{33})^3) = \Omega(n^{99})$.
- Suppose, on the other hand, that $|R(x)| = o(n^{33})$.
- Then R(x) must run in time $\Omega(n^{99})$.
- In either case, there is no contradiction.

HAMILTONIAN PATH

- A **Hamiltonian path** of a graph is a path that visits every node of the graph exactly once.
- Suppose graph G has n nodes: $1, 2, \ldots, n$.
- A Hamiltonian path can be expressed as a permutation π of $\{1, 2, \ldots, n\}$ such that
 - $-\pi(i) = j$ means the *i*th position is occupied by node *j*.

 $- (\pi(i), \pi(i+1)) \in G \text{ for } i = 1, 2, \dots, n-1.$

• HAMILTONIAN PATH asks if a graph has a Hamiltonian path.

Reduction of $\operatorname{HAMILTONIAN}\,\operatorname{PATH}\,$ to SAT

- Given a graph G, we shall construct a CNF R(G) such that R(G) is satisfiable if and only if G has a Hamiltonian path.
- R(G) has n^2 boolean variables $x_{ij}, 1 \le i, j \le n$.
- x_{ij} means

the ith position in the Hamiltonian path is occupied by node j.

The Clauses of R(G) and Their Intended Meanings

- 1. Each node j must appear in the path.
 - $x_{1j} \vee x_{2j} \vee \cdots \vee x_{nj}$ for each j.
- 2. No node j appears twice in the path.
 - $\neg x_{ij} \lor \neg x_{kj}$ for all i, j, k with $i \neq k$.
- 3. Every position i on the path must be occupied.
 - $x_{i1} \vee x_{i2} \vee \cdots \vee x_{in}$ for each *i*.
- 4. No two nodes j and k occupy the same position in the path.
 - $\neg x_{ij} \lor \neg x_{ik}$ for all i, j, k with $j \neq k$.
- 5. Nonadjacent nodes i and j cannot be adjacent in the path.
 - $\neg x_{ki} \lor \neg x_{k+1,j}$ for all $(i,j) \notin G$ and $k = 1, 2, \ldots, n-1$.

The Proof

- R(G) contains $O(n^3)$ clauses.
- R(G) can be computed efficiently (simple exercise).
- Suppose $T \models R(G)$.
- From Clauses of 1 and 2, for each node j there is a unique position i such that $T \models x_{ij}$.
- From Clauses of 3 and 4, for each position *i* there is a unique node *j* such that $T \models x_{ij}$.
- So there is a permutation π of the nodes such that $\pi(i) = j$ if and only if $T \models x_{ij}$.

The Proof (concluded)

- Clauses of 5 furthermore guarantees that $(\pi(1), \pi(2), \ldots, \pi(n))$ is a Hamiltonian path.
- Conversely, suppose G has a Hamiltonian path

 $(\pi(1),\pi(2),\ldots,\pi(n)),$

where π is a permutation.

• Clearly, the truth assignment

 $T(x_{ij}) =$ true if and only if $\pi(i) = j$

satisfies all clauses of R(G).

A Comment $^{\rm a}$

- An answer to "Is R(G) satisfiable?" does answer "Is G Hamiltonian?"
- But a positive answer does not give a Hamiltonian path for G.
 - Providing witness is not a requirement of reduction.
- A positive answer to "Is R(G) satisfiable?" plus a satisfying truth assignment does provide us with a Hamiltonian path for G.

^aContributed by Ms. Amy Liu (J94922016) on May 29, 2006.