- $A'(x) = 2x^2 + 8x + 6$.
- Bob verifies that $A'(0) \cdot A'(1) = 5 \mod 13$.
- Indeed $A'(0) \cdot A'(1) = 6 \cdot 16 = 5 \mod 13$.
- So far A'(x) is consistent with the alleged value 5.
- Bob deletes the leading \prod_x .
- The free variable x in the resulting expression prevents it from being an evaluation problem.

• So Bob replaces x with a random number mod 13, say 9:

$$\sum_{y=0}^{1} \left\{ (9+y) \cdot \prod_{z=0}^{1} \left[(9 \cdot z + y \cdot (1-z)) + \sum_{w=0}^{1} (z + y \cdot (1-w)) \right] \right\}.$$

• The above equals

$$a = A'(9) = 2 \cdot 9^2 + 8 \cdot 9 + 6 = 6 \mod 13.$$

• Bob sends 9 to Alice.

• In the new stage, Alice evaluates

$$A'(y) = 2y^3 + y^2 + 3y$$

after substituting x = 9 and sends it to Bob.

- Bob checks that $A'(0) + A'(1) = 6 \mod 13$.
- Indeed $0 + 6 = 6 \mod 13$.
- Bob deletes the leading \sum_{y} .
- Bob replaces y with a random number mod 13, say 3:

$$(9+3) \cdot \prod_{z=0}^{1} \left\{ \left[9 \cdot z + 3 \cdot (1-z) \right] + \sum_{w=0}^{1} \left[z + 3 \cdot (1-w) \right] \right\}.$$

• The above should equal $A'(3) = 2 \cdot 3^2 + 3^2 + 3 \cdot 3 = 7 \mod 13$.

• So

$$A = \prod_{z=0}^{1} \{ [9 \cdot z + 3 \cdot (1-z)] + \sum_{w=0}^{1} [z + 3 \cdot (1-w)] \}$$

should equal

$$a = 12^{-1} \cdot 7 = 12 \cdot 7 = 6 \mod 13.$$

• Bob sends 3 to Alice.

• In the new stage, Alice evaluates

$$A'(z) = 8z + 6$$

after substituting y = 3 and sends it to Bob.

- Bob checks that $A'(0) \cdot A'(1) = 6 \mod 13$.
- Indeed $6 \cdot 14 = 6 \mod 13$.
- Bob deletes the leading \prod_z .
- Bob replaces z with a random number mod 13, say 7:

$$[9 \cdot 7 + 3 \cdot (1 - 7)] + \sum_{w=0}^{1} [7 + 3 \cdot (1 - w)].$$

- The above should equal $A'(7) = 8 \cdot 7 + 6 = 10 \mod 13$.
- So

$$A = \sum_{w=0}^{1} [z + 3 \cdot (1 - w)]$$
 (15)

should equal

$$a = 10 - [9 \cdot 7 + 3 \cdot (1 - 7)] = 10 - 45 = 4 \mod 13.$$

• Bob sends 7 to Alice.

• In the new stage, Alice evaluates

$$A'(w) = 10 - 3w$$

after substituting z = 7 and sends it to Bob.

- Bob checks that $A'(0) + A'(1) = 4 \mod 13$.
- Indeed $10 + 7 = 4 \mod 13$.
- Now there are no more $\sum s$ and $\prod s$.
- Bob checks if A'(w) is indeed as claimed by using (15) with z = 7.
- It is, and Bob accepts $A_{\phi} \neq 0 \mod 13$.

- Clearly, if $A_{\phi} > 0$, the protocol convinces Bob of this.
- We next show that if $A_{\phi} = 0$, then Bob will be cheated with only negligible probability.

Lemma 90 Suppose $A_{\phi} = 0$ and Alice claims a nonzero value \boldsymbol{a} . Then with probability $\geq (1 - \frac{2n}{2^n})^{i-1}$, the value of \boldsymbol{a} claimed at the ith stage is wrong.

Proof of Lemma 90 (continued)

- The first *a* claimed by Alice is nonzero, which is certainly wrong.
- The lemma therefore holds for i = 1.
- By induction, for i > 1, the (i 1)st value was wrong with probability $\geq (1 \frac{2n}{2^n})^{i-2}$.
- Suppose it is indeed wrong.
- The polynomial A'(x) produced by Alice in the *i*th stage must be such that $A'(0) \cdot A'(1)$ or A'(0) + A'(1) equals the wrong value \boldsymbol{a} .

Proof of Lemma 90 (continued)

- Alice must therefore supply a wrong polynomial A'(x), different from the true polynomial C(x).
 - Recall that Bob uses A'(x) not C(x).
- C(x) A'(x) is a polynomial of degree 2n.
- Hence it has at most 2n roots.
- The random number between 0 and p-1 picked by Bob will be one of these roots with probability at most 2n/p.

Proof of Lemma 90 (concluded)

• The probability that a at the *i*th stage is correct is

$$\leq \left[1 - \left(1 - \frac{2n}{2^n}\right)^{i-2}\right] \left(1 - \frac{2n}{p}\right)$$

$$\leq 1 - \left(1 - \frac{2n}{2^n}\right)^{i-2} \left(1 - \frac{2n}{p}\right)$$

$$\leq 1 - \left(1 - \frac{2n}{2^n}\right)^{i-1}.$$

- Recall that $p \geq 2^n$.

Proof of Theorem (concluded)

- In the last round, Bob will catch Alice's deception with probability $(1 \frac{2n}{2^n})^n \to 1$.
- To achieve the confidence level of $1 2^{-n}$ required by the definition of IP, simply repeat the protocol.

The Algorithm

- 1: Alice and Bob both arithmetize ϕ to obtain Φ ;
- 2: Alice picks a prime p and sends it to Bob;
- 3: Bob rejects if p does not satisfy the desired conditions;
- 4: Alice claims $A_{\phi} = \boldsymbol{a} \mod p$ to Bob;
- 5: Bob set $A = A_{\phi}$;
- 6: repeat
- 7: Alice sends A'(x) to Bob;
- 8: Bob rejects if $\mathbf{a} \neq A'(0) \cdot A'(1) \mod p$ when $A = \prod_x \cdots$ or $\mathbf{a} \neq A'(0) + A'(1) \mod p$ when $A = \sum_x \cdots$;
- 9: Bob picks a random number r and sends it to Alice;
- 10: Bob calculates $\boldsymbol{a} = A'(r)$;
- 11: Alice and Bob both set A = A'(r); {Some details left out.}
- 12: **until** there no \prod or \sum left in A
- 13: Bob accepts iff A'(x) is as claimed in the last stage;

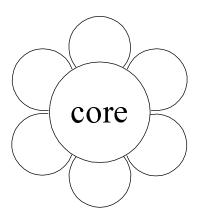
Exponential Circuit Complexity

- Almost all boolean functions require $\frac{2^n}{2n}$ gates to compute (generalized Theorem 14 on p. 153).
- Progress of using circuit complexity to prove exponential lower bounds for NP-complete problems has been slow.
 - As of January 2006, the best lower bound is 5n o(n).^a
- We next establish exponential lower bounds for depth-3 circuits.

^aIwama and Morizumi (2002).

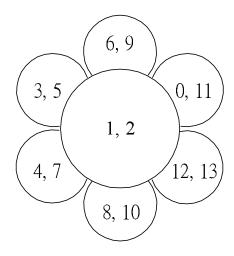
Sunflowers

- Fix $p \in \mathbb{Z}^+$ and $\ell \in \mathbb{Z}^+$.
- A sunflower is a family of p sets $\{P_1, P_2, \dots, P_p\}$, called **petals**, each of cardinality at most ℓ .
- All pairs of sets in the family must have the same intersection (called the **core** of the sunflower).



A Sample Sunflower

 $\{\{1, 2, 3, 5\}, \{1, 2, 6, 9\}, \{0, 1, 2, 11\},$ $\{1, 2, 12, 13\}, \{1, 2, 8, 10\}, \{1, 2, 4, 7\}\}$



The Erdős-Rado Lemma

Lemma 91 Let \mathcal{Z} be a family of more than $M = (p-1)^{\ell} \ell!$ nonempty sets, each of cardinality ℓ or less. Then \mathcal{Z} must contain a sunflower.

- Induction on ℓ .
- For $\ell = 1$, p different singletons form a sunflower (with an empty core).
- Suppose $\ell > 1$.
- Consider a maximal subset $\mathcal{D} \subseteq \mathcal{Z}$ of disjoint sets.
 - Every set in $\mathcal{Z} \mathcal{D}$ intersects some set in \mathcal{D} .

The Proof of the Erdős-Rado Lemma (continued)

- Suppose \mathcal{D} contains at least p sets.
 - $-\mathcal{D}$ constitutes a sunflower with an empty core.
- Suppose \mathcal{D} contains fewer than p sets.
 - Let D be the union of all sets in \mathcal{D} .
 - $-|D| \leq (p-1)\ell$ and D intersects every set in \mathbb{Z} .
 - There is a $d \in D$ that intersects more than $\frac{M}{(p-1)\ell} = (p-1)^{\ell-1}(\ell-1)! \text{ sets in } \mathcal{Z}.$
 - Consider $\mathcal{Z}' = \{Z \{d\} : Z \in \mathcal{Z}, d \in Z\}.$
 - $-\mathcal{Z}'$ has more than $M'=(p-1)^{\ell-1}(\ell-1)!$ sets.
 - -M' is just M with ℓ decreased by one.

The Proof of the Erdős-Rado Lemma (concluded)

- (continued)
 - $-\mathcal{Z}'$ contains a sunflower by induction, say

$$\{P_1,P_2,\ldots,P_p\}.$$

- Now,

$$\{P_1 \cup \{d\}, P_2 \cup \{d\}, \dots, P_p \cup \{d\}\}\$$

is a sunflower in \mathcal{Z} .

Comments on the Erdős-Rado Lemma

- A family of more than M sets must contain a sunflower.
- **Plucking** a sunflower entails replacing the sets in the sunflower by its core.
- By repeatedly finding a sunflower and plucking it, we can reduce a family with more than M sets to a family with at most M sets.
- If \mathcal{Z} is a family of sets, the above result is denoted by $\operatorname{pluck}(\mathcal{Z})$.

An Example of Plucking

• Recall the sunflower on p. 733:

$$\mathcal{Z} = \{\{1, 2, 3, 5\}, \{1, 2, 6, 9\}, \{0, 1, 2, 11\}, \{1, 2, 12, 13\}, \{1, 2, 8, 10\}, \{1, 2, 4, 7\}\}$$

• Then

$$pluck(\mathcal{Z}) = \{\{1, 2\}\}.$$

Exponential Circuit Complexity for NP-Complete Problems

- We shall prove exponential lower bounds for NP-complete problems using *monotone* circuits.
 - Monotone circuits are circuits without ¬ gates.
- Note that this does not settle the P vs. NP problem or any of the conjectures on p. 489.

The Power of Monotone Circuits

- Monotone circuits can only compute monotone boolean functions.
- They are powerful enough to solve a P-complete problem, MONOTONE CIRCUIT VALUE (p. 241).
- There are NP-complete problems that are not monotone; they cannot be computed by monotone circuits at all.
- There are NP-complete problems that are monotone; they can be computed by monotone circuits.
 - HAMILTONIAN PATH and CLIQUE.

$\mathrm{CLIQUE}_{n,k}$

- CLIQUE_{n,k} is the boolean function deciding whether a graph G = (V, E) with n nodes has a clique of size k.
- The input gates are the $\binom{n}{2}$ entries of the adjacency matrix of G.
 - Gate g_{ij} is set to true if the associated undirected edge $\{i, j\}$ exists.
- CLIQUE_{n,k} is a monotone function.
- Thus it can be computed by a monotone circuit.
- This does not rule out that nonmonotone circuits for $CLIQUE_{n,k}$ may use fewer gates.

Crude Circuits

- One possible circuit for $CLIQUE_{n,k}$ does the following.
 - 1. For each $S \subseteq V$ with |S| = k, there is a subcircuit with $O(k^2) \wedge$ -gates testing whether S forms a clique.
 - 2. We then take an OR of the outcomes of all the $\binom{n}{k}$ subsets $S_1, S_2, \ldots, S_{\binom{n}{k}}$.
- This is a monotone circuit with $O(k^2 \binom{n}{k})$ gates, which is exponentially large unless k or n-k is a constant.
- A crude circuit $CC(X_1, X_2, ..., X_m)$ tests if any of $X_i \subseteq V$ forms a clique.
 - The above-mentioned circuit is $CC(S_1, S_2, \ldots, S_{\binom{n}{k}})$.

Razborov's Theorem

Theorem 92 (Razborov (1985)) There is a constant c such that for large enough n, all monotone circuits for $CLIQUE_{n,k}$ with $k = n^{1/4}$ have size at least $n^{cn^{1/8}}$.

- We shall approximate any monotone circuit for $CLIQUE_{n,k}$ by a restricted kind of crude circuit.
- The approximation will proceed in steps: one step for each gate of the monotone circuit.
- Each step introduces few errors (false positives and false negatives).
- But the resulting crude circuit has exponentially many errors.

The Proof

- Fix $k = n^{1/4}$.
- Fix $\ell = n^{1/8}$.
- Note that

$$2\binom{\ell}{2} \le k.$$

- p will be fixed later to be $n^{1/8} \log n$.
- Fix $M = (p-1)^{\ell} \ell!$.
 - Recall the Erdős-Rado lemma (p. 734).

The Proof (continued)

- Each crude circuit used in the approximation process is of the form $CC(X_1, X_2, ..., X_m)$, where:
 - $-X_i\subseteq V.$
 - $-|X_i| \leq \ell.$
 - -m < M.
- We shall show how to approximate any circuit for $CLIQUE_{n,k}$ by such a crude circuit, inductively.
- The induction basis is straightforward:
 - Input gate g_{ij} is the crude circuit $CC(\{i,j\})$.

The Proof (continued)

- Any monotone circuit can be considered the OR or AND of two subcircuits.
- We shall show how to build approximators of the overall circuit from the approximators of the two subcircuits.
 - We are given two crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
 - $-\mathcal{X}$ and \mathcal{Y} are two families of at most M sets of nodes, each set containing at most ℓ nodes.
 - We construct the approximate OR and the approximate AND of these subcircuits.
 - Then show both approximations introduce few errors.

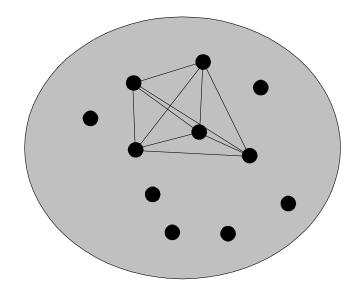
The Proof: Positive Examples

- Error analysis will be applied to only **positive** examples and negative examples.
- A positive example is a graph that has $\binom{k}{2}$ edges connecting k nodes in all possible ways.
- There are $\binom{n}{k}$ such graphs.
- They all should elicit a true output from $CLIQUE_{n,k}$.

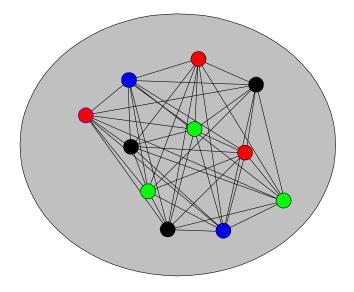
The Proof: Negative Examples

- Color the nodes with k-1 different colors and join by an edge any two nodes that are colored differently.
- There are $(k-1)^n$ such graphs.
- They all should elicit a false output from $CLIQUE_{n,k}$.

Positive and Negative Examples with k=5



A positive example



A negative example

The Proof: OR

- $CC(\mathcal{X} \cup \mathcal{Y})$ is equivalent to the OR of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
- Violations occur when $|\mathcal{X} \cup \mathcal{Y}| > M$.
- Such violations can be eliminated by using

$$CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$$

as the approximate OR of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.

• We now count the numbers of errors this approximate OR makes on the positive and negative examples.

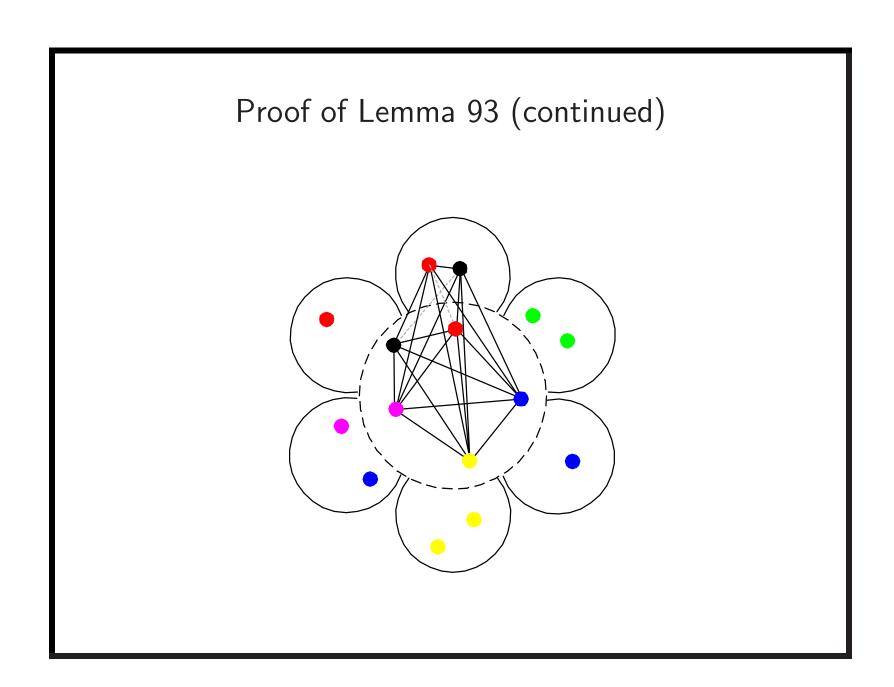
The Proof: OR (concluded)

- $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a **false positive** if a negative example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return false but makes $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return true.
- $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a **false negative** if a positive example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return true but makes $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return false.
- How many false positives and false negatives are introduced by $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$?

The Number of False Positives

Lemma 93 CC(pluck($\mathcal{X} \cup \mathcal{Y}$)) introduces at most $\frac{M}{p-1} 2^{-p} (k-1)^n$ false positives.

- Assume a plucking replaces the sunflower $\{Z_1, Z_2, \ldots, Z_p\}$ with its core Z.
- A false positive is *necessarily* a coloring such that:
 - There is a pair of identically colored nodes in each petal Z_i (and so both crude circuits return false).
 - But the core contains distinctly colored nodes.
 - * This implies at least one node from each same-color pair was plucked away.
- We now count the number of such colorings.



Proof of Lemma 93 (continued)

- Color nodes V at random with k-1 colors and let R(X) denote the event that there are repeated colors in set X.
- Now prob $[R(Z_1) \wedge \cdots \wedge R(Z_p) \wedge \neg R(Z)]$ is at most

$$\operatorname{prob}[R(Z_1) \wedge \cdots \wedge R(Z_p) | \neg R(Z)]$$

$$= \prod_{i=1}^{p} \operatorname{prob}[R(Z_i) | \neg R(Z)] \leq \prod_{i=1}^{p} \operatorname{prob}[R(Z_i)]. (16)$$

- First equality holds because $R(Z_i)$ are independent given $\neg R(Z)$ as Z contains their only common nodes.
- Last inequality holds as the likelihood of repetitions in Z_i decreases given no repetitions in $Z \subseteq Z_i$.

Proof of Lemma 93 (continued)

- Consider two nodes in Z_i .
- The probability that they have identical color is $\frac{1}{k-1}$.
- Now prob $[R(Z_i)] \le \frac{\binom{|Z_i|}{2}}{k-1} \le \frac{\binom{\ell}{2}}{k-1} \le \frac{1}{2}$.
- So the probability^a that a random coloring is a new false positive is at most 2^{-p} by inequality (16).
- As there are $(k-1)^n$ different colorings, each plucking introduces at most $2^{-p}(k-1)^n$ false positives.

^aProportion, i.e.

Proof of Lemma 93 (concluded)

- Recall that $|\mathcal{X} \cup \mathcal{Y}| \leq 2M$.
- Each plucking reduces the number of sets by p-1.
- Hence at most $\frac{M}{p-1}$ pluckings occur in pluck $(\mathcal{X} \cup \mathcal{Y})$.
- At most

$$\frac{M}{p-1} 2^{-p} (k-1)^n$$

false positives are introduced.

The Number of False Negatives

Lemma 94 CC(pluck($\mathcal{X} \cup \mathcal{Y}$)) introduces no false negatives.

- Each plucking replaces a set in a crude circuit by a subset.
- This makes the test less stringent.
 - For each $Y \in \mathcal{X} \cup \mathcal{Y}$, there must exist at least one $X \in \text{pluck}(\mathcal{X} \cup \mathcal{Y})$ such that $X \subseteq Y$.
 - So if $Y \in \mathcal{X} \cup \mathcal{Y}$ is a clique, then $\text{pluck}(\mathcal{X} \cup \mathcal{Y})$ also contains a clique, in X.
- So plucking can only increase the number of accepted graphs.

The Proof: AND

• The approximate AND of crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ is

$$CC(pluck(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\})).$$

• We now count the numbers of errors this approximate AND makes on the positive and negative examples.

The Proof: AND (concluded)

- The approximate AND introduces a **false positive** if a negative example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return false but makes the approximate AND return true.
- The approximate AND *introduces* a **false negative** if a positive example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true but makes the approximate AND return false.
- How many false positives and false negatives are introduced by the approximate AND?

The Number of False Positives

Lemma 95 The approximate AND introduces at most $M^2 2^{-p} (k-1)^n$ false positives.

- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false positives.
 - If $X_i \cup Y_j$ is a clique, both X_i and Y_j must be cliques, making both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true.
- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell\})$ introduces no false positives for the same reason as above.

Proof of Lemma 95 (concluded)

- $|\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\}| \le M^2$.
- Each plucking reduces the number of sets by p-1.
- So pluck $(X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell)$ involves $\leq M^2/(p-1)$ pluckings.
- Each plucking introduces at most $2^{-p}(k-1)^n$ false positives by the proof of Lemma 93 (p. 752).
- The desired upper bound is

$$[M^2/(p-1)] 2^{-p}(k-1)^n \le M^2 2^{-p}(k-1)^n.$$

The Number of False Negatives

Lemma 96 The approximate AND introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.

- We follow the same three-step proof as before.
- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false negatives.
 - Suppose both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ accept a positive example with a clique of size k.
 - The clique must contain an $X_i \in \mathcal{X}$ and a $Y_j \in \mathcal{Y}$.
 - As it contains $X_i \cup Y_j$, the new circuit returns true.

Proof of Lemma 96 (concluded)

- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell\})$ introduces $\leq M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.
 - Deletion of set $Z = X_i \cup Y_j$ larger than ℓ introduces false negatives which are cliques containing Z.
 - There are $\binom{n-|Z|}{k-|Z|}$ such cliques.
 - $-\binom{n-|Z|}{k-|Z|} \le \binom{n-\ell-1}{k-\ell-1} \text{ as } |Z| > \ell.$
 - There are at most M^2 such Zs.
- Plucking introduces no false negatives.

Two Summarizing Lemmas

From Lemmas 93 (p. 752) and 95 (p. 760), we have:

Lemma 97 Each approximation step introduces at most $M^2 2^{-p} (k-1)^n$ false positives.

From Lemmas 94 (p. 757) and 96 (p. 762), we have:

Lemma 98 Each approximation step introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.

The Proof (continued)

- The above two lemmas show that each approximation step introduce "few" false positives and false negatives.
- We next show that the resulting crude circuit has "a lot" of false positives or false negatives.

The Final Crude Circuit

Lemma 99 Every final crude circuit either is identically false—thus wrong on all positive examples—or outputs true on at least half of the negative examples.

- Suppose it is not identically false.
- By construction, it accepts at least those graphs that have a clique on some set X of nodes, with $|X| \leq \ell$, which at $n^{1/8}$ is less than $k = n^{1/4}$.
- The proof of Lemma 93 (p. 752ff) shows that at least half of the colorings assign different colors to nodes in X.
- So half of the negative examples have a clique in X and are accepted.

The Proof (continued)

- Recall the constants on p. 744: $k = n^{1/4}$, $\ell = n^{1/8}$, $p = n^{1/8} \log n$, $M = (p-1)^{\ell} \ell! < n^{(1/3)n^{1/8}}$ for large n.
- Suppose the final crude circuit is identically false.
 - By Lemma 98 (p. 764), each approximation step introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.
 - There are $\binom{n}{k}$ positive examples.
 - The original crude circuit for $CLIQUE_{n,k}$ has at least

$$\frac{\binom{n}{k}}{M^2 \binom{n-\ell-1}{k-\ell-1}} \ge \frac{1}{M^2} \left(\frac{n-\ell}{k}\right)^{\ell} \ge n^{(1/12)n^{1/8}}$$

gates for large n.

The Proof (concluded)

- Suppose the final crude circuit is not identically false.
 - Lemma 99 (p. 766) says that there are at least $(k-1)^n/2$ false positives.
 - By Lemma 97 (p. 764), each approximation step introduces at most $M^2 2^{-p} (k-1)^n$ false positives
 - The original crude circuit for $CLIQUE_{n,k}$ has at least

$$\frac{(k-1)^n/2}{M^2 2^{-p} (k-1)^n} = \frac{2^{p-1}}{M^2} \ge n^{(1/3)n^{1/8}}$$

gates.

$P \neq NP \text{ Proved?}$

- Razborov's theorem says that there is a monotone language in NP that has no polynomial monotone circuits.
- If we can prove that all monotone languages in P have polynomial monotone circuits, then $P \neq NP$.
- But Razborov proved in 1985 that some monotone languages in P have no polynomial monotone circuits!