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Densitya

The density of language L ⊆ Σ∗ is defined as

densL(n) = |{x ∈ L : |x | ≤ n}|.

• If L = {0, 1}∗, then densL(n) = 2n+1 − 1.

• So the density function grows at most exponentially.

• For a unary language L ⊆ {0}∗,

densL(n) ≤ n + 1.

– Because L ⊆ {ǫ, 0, 00, . . . ,

n
︷ ︸︸ ︷

00 · · · 0, . . .}.

aBerman and Hartmanis (1977).
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Sparsity

• Sparse languages are languages with polynomially

bounded density functions.

• Dense languages are languages with superpolynomial

density functions.
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Self-Reducibility for sat

• An algorithm exploits self-reducibility if it reduces the

problem to the same problem with a smaller size.

• Let φ be a boolean expression in n variables

x1, x2, . . . , xn.

• t ∈ {0, 1}j is a partial truth assignment for

x1, x2, . . . , xj .

• φ[ t ] denotes the expression after substituting the truth

values of t for x1, x2, . . . , x| t | in φ.
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An Algorithm for sat with Self-Reduction

We call the algorithm below with empty t.

1: if | t | = n then

2: return φ[ t ];

3: else

4: return φ[ t0 ] ∨ φ[ t1 ];

5: end if

The above algorithm runs in exponential time, by visiting all

the partial assignments (or nodes on a depth-n binary tree).
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NP-Completeness and Densitya

Theorem 78 If a unary language U ⊆ {0}∗ is

NP-complete, then P = NP.

• Suppose there is a reduction R from sat to U .

• We shall use R to guide us in finding the truth

assignment that satisfies a given boolean expression φ

with n variables if it is satisfiable.

• Specifically, we use R to prune the exponential-time

exhaustive search on p. 611.

• The trick is to keep the already discovered results φ[ t ]

in a table H.

aBerman (1978).
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1: if | t | = n then

2: return φ[ t ];

3: else

4: if (R(φ[ t ]), v) is in table H then

5: return v;

6: else

7: if φ[ t0 ] = “satisfiable” or φ[ t1 ] = “satisfiable” then

8: Insert (R(φ[ t ]), 1) into H;

9: return “satisfiable”;

10: else

11: Insert (R(φ[ t ]), 0) into H;

12: return “unsatisfiable”;

13: end if

14: end if

15: end if
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The Proof (continued)

• Since R is a reduction, R(φ[ t ]) = R(φ[ t′ ]) implies that

φ[ t ] and φ[ t′ ] must be both satisfiable or unsatisfiable.

• R(φ[ t ]) has polynomial length ≤ p(n) because R runs in

log space.

• As R maps to unary numbers, there are only

polynomially many p(n) values of R(φ[ t ]).

• How many nodes of the complete binary tree (of

invocations/truth assignments) need to be visited?

• If that number is a polynomial, the overall algorithm

runs in polynomial time and we are done.
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The Proof (continued)

• A search of the table takes time O(p(n)) in the random

access memory model.

• The running time is O(Mp(n)), where M is the total

number of invocations of the algorithm.

• The invocations of the algorithm form a binary tree of

depth at most n.
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The Proof (continued)

• There is a set T = {t1, t2, . . .} of invocations (partial

truth assignments, i.e.) such that:

– |T | ≥ (M − 1)/(2n).

– All invocations in T are recursive (nonleaves).

– None of the elements of T is a prefix of another.
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The Proof (continued)

• All invocations t ∈ T have different R(φ[ t ]) values.

– None of s, t ∈ T is a prefix of another.

– The invocation of one started after the invocation of

the other had terminated.

– If they had the same value, the one that was invoked

second would have looked it up, and therefore would

not be recursive, a contradiction.

• The existence of T implies that there are at least

(M − 1)/(2n) different R(φ[ t ]) values in the table.
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The Proof (concluded)

• We already know that there are at most p(n) such

values.

• Hence (M − 1)/(2n) ≤ p(n).

• Thus M ≤ 2np(n) + 1.

• The running time is therefore O(Mp(n)) = O(np2(n)).

• We comment that this theorem holds for any sparse

language, not just unary ones.a

aMahaney (1980).
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coNP-Completeness and Density

Theorem 79 (Fortung (1979)) If a unary language

U ⊆ {0}∗ is coNP-complete, then P = NP.

• Suppose there is a reduction R from sat complement

to U .

• The rest of the proof is basically identical except that,

now, we want to make sure a formula is unsatisfiable.
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Oraclesa

• We will be considering TMs with access to a

“subroutine” or black box.

• This black box solves a language problem L (such as

sat) in one step.

• By presenting an input x to the black box, in one step

the black box returns “yes” or “no” depending on

whether x ∈ L.

• This black box is called aptly an oracle.

aTuring (1936).
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Oracle Turing Machines

• A Turing machine M? with oracle is a multistring

deterministic TM.

• It has a special string called the query string.

• It also has three special states:

– q? (the query state).

– qyes and qno (the answer states).
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Oracle Turing Machines (concluded)

• Let A ⊆ Σ∗ be a language.

• From q?, M? moves to either qyes or qno depending on

whether the current query string is in A or not.

– This piece of information can be used by M?.

– Think of A as a black box or a vendor-supplied

subroutine.

• M? is otherwise like an ordinary TM.

• MA(x) denotes the computation of M? with oracle A on

input x.
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Complexity Measures of Oracle TMs

• The time complexity for oracle TMs is like that for

ordinary TMs.

• Nondeterministic oracle TMs are defined in the same

way.

• Let C be a deterministic or nondeterministic time

complexity class.

• Define CA to be the class of all languages decided (or

accepted) by machines in C with access to oracle A.
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An Example

• sat complement ∈ Psat.

– Reverse the answer of sat oracle A as our answer.

1: if φ ∈ A then

2: return “no”; {φ is satisfiable.}

3: else

4: return “yes”; {φ is not satisfiable.}

5: end if

• As sat complement is coNP-complete (p. 344),

coNP ⊆ Psat.
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The Turing Reduction

• Recall L1 is reducible to L2 if there is a logspace

function R such that x ∈ L1 ⇔ R(x) ∈ L2 (p. 195).

– It is called logspace reduction, Karp reduction

(p. 197), or many-one reduction.

• But the reduction in proving L ∈ CA is more general.

– An algorithm B for C with access to A exists.

– B can call A many times within the resource bound.

– We say L is Turing-reducible to A.
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Two Types of Reductions

Lemma 80 If L1 is (logspace-) reducible to L2, then L1 is

Turing-reducible to L2.

• Logspace reduction is more restrictive than Turing

reduction.

• It is Turing reduction with only one query to L2.

• Note also that a language in L also belongs in P.

Corollary 81 If L is complete under logspace-reductions,

then L is complete under Turing reductions.
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Two Types of Reductions (continued)

• Turing reduction is more general than (p. 627)—and

equally valid as—logspace reduction.

x R

R(x)

A? yes/no
A?

x B yes/no

• This is true even if B runs in logarithmic space and

oracle A is queried only once.
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Two Types of Reductions (continued)

• Turing reduction is more powerful than logspace

reduction.

• For example, there are languages A and B such that A is

Turing-reducible to B but not logspace-reducible to B.a

• However, for the class NP, no such separation has been

proved.b

aLadner, Lynch, and Selman (1975).
bIf we assume NP does not have p-measure 0, then separation exists

(Lutz and Mayordomo (1996)).
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Two Types of Reductions (concluded)

• The Turing reduction is adaptive.

– Later queries may depend on prior queries.

• If we restrict the Turing reduction to ask all queries

before receiving any answers, the reduction is called the

truth-table reduction.

• Separation results exist for the Turing and truth-table

reductions given some conjectures.a

aHitchcock and Pavan (2006).
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The Power of Turing Reduction

• sat complement is not likely to be reducible to sat.

– Otherwise, coNP = NP as sat complement is

coNP-complete (p. 344).

• But sat complement is polynomial-time

Turing-reducible to sat.

– sat complement ∈ Psat (p. 625).

– True even though the oracle sat is called only once!

– The algorithm on p. 625 is not a logspace reduction.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 631



Computation That Counts
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Counting Problems

• Counting problems are concerned with the number of

solutions.

– #sat: the number of satisfying truth assignments to

a boolean formula.

– #hamiltonian path: the number of Hamiltonian

paths in a graph.

• They cannot be easier than their decision versions.

– The decision problem has a solution if and only if the

solution count is larger than 0.

• But they can be harder than their decision versions.
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Decision and Counting Problems

• FP is the set of polynomial-time computable functions

f : {0, 1}∗ → Z.

– GCD, LCM, matrix-matrix multiplication, etc.

• If #sat ∈ FP, then P = NP.

– Given boolean formula φ, calculate its number of

satisfying truth assignments, k, in polynomial time.

– Declare “φ ∈ sat” if and only if k ≥ 1.

• The validity of the reverse direction is open.
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A Counting Problem Harder than Its Decision Version

• Some counting problems are harder than their decision

versions.

• cycle asks if a directed graph contains a cycle.

• #cycle counts the number of cycles in a directed

graph.

• cycle is in P by a simple greedy algorithm.

• But #cycle is hard unless P = NP.
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Counting Class #P

A function f is in #P (or f ∈ #P) if

• There exists a polynomial-time NTM M .

• M(x) has f(x) accepting paths for all inputs x.

• f(x) = number of accepting paths of M(x).
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Some #P Problems

• f(φ) = number of satisfying truth assignments to φ.

– The desired NTM guesses a truth assignment T and

accepts φ if and only if T |= φ.

– Hence f ∈ #P.

– f is also called #sat.

• #hamiltonian path.

• #3-coloring.
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#P Completeness

• Function f is #P-complete if

– f ∈ #P.

– #P ⊆ FPf .

∗ Every function in #P can be computed in

polynomial time with access to a black box or

oracle for f .

– Of course, oracle f will be accessed only a

polynomial number of times.

– #P is said to be polynomial-time

Turing-reducible to f .
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#sat Is #P-Complete

• First, it is in #P (p. 637).

• Let f ∈ #P compute the number of accepting paths of

M .

• Cook’s theorem uses a parsimonious reduction from M

on input x to an instance φ of sat (p. 247).

– Hence the number of accepting paths of M(x) equals

the number of satisfying truth assignments to φ.

• Call the oracle #sat with φ to obtain the desired

answer regarding f(x).
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cycle cover

• A set of node-disjoint cycles that cover all nodes in a

directed graph is called a cycle cover.

• There are 3 cycle covers (in red) above.
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cycle cover and bipartite perfect matching

Proposition 82 cycle cover and bipartite perfect

matching (p. 390) are parsimoniously reducible to each

other.

• A polynomial-time algorithm creates a bipartite graph

G′ from any directed graph G.

• Moreover, the number cycle covers for G equals the

number of bipartite perfect matchings for G′.

• And vice versa.

Corollary 83 cycle cover ∈ P .
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Illustration of the Proof

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

w1

w4w3

w2 w5
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Permanent

• The permanent of an n × n integer matrix A is

perm(A) =
∑

π

n∏

i=1

Ai,π(i).

– π ranges over all permutations of n elements.

• 0/1 permanent computes the permanent of a 0/1

(binary) matrix.

– The permanent of a binary matrix is at most n!.

• Simpler than determinant (5) on p. 392: no signs.

• But, surprisingly, much harder to compute than

determinant!
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Permanent and Counting Perfect Matchings

• bipartite perfect matching is related to

determinant (p. 393).

• #bipartite perfect matching is related to

permanent.

Proposition 84 0/1 permanent and bipartite perfect

matching are parsimoniously reducible to each other.
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The Proof

• Given a bipartite graph G, construct an n × n binary

matrix A.

– The (i, j)th entry Aij is 1 if (i, j) ∈ E and 0

otherwise.

• Then perm(A) = number of perfect matchings in G.
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Illustration of the Proof Based on p. 642 (Left)

A =













0 0 1 1 0

0 1 0 0 0

1 0 0 0 1

1 0 1 1 0

1 0 0 0 1













.

• perm(A) = 4.

• The permutation corresponding to the perfect matching

on p. 642 is marked.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 646



Permanent and Counting Cycle Covers

Proposition 85 0/1 permanent and cycle cover are

parsimoniously reducible to each other.

• Let A be the adjacency matrix of the graph on p. 642

(right).

• Then perm(A) = number of cycle covers.
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Three Parsimoniously Equivalent Problems

From Propositions 82 (p. 641) and 84 (p. 644), we

summarize:

Lemma 86 0/1 permanent, bipartite perfect

matching, and cycle cover are parsimoniously

equivalent.

We will show that the counting versions of all three

problems are in fact #P-complete.
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weighted cycle cover

• Consider a directed graph G with integer weights on the

edges.

• The weight of a cycle cover is the product of its edge

weights.

• The cycle count of G is sum of the weights of all cycle

covers.

– Let A be G’s adjacency matrix but Aij = wi if the

edge (i, j) has weight wi.

– Then perm(A) = G’s cycle count (same proof as

Proposition 85 on p. 647).

• #cycle cover is a special case: All weights are 1.
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An Examplea

4

4

4

2

3

4

4

4

2

3

4

4

4

2

3

There are 3 cycle covers, and the cycle count is

(4 · 1 · 1) · (1) + (1 · 1) · (2 · 3) + (4 · 2 · 1 · 1) = 18.

aEach edge has weight 1 unless stated otherwise.
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Three #P-Complete Counting Problems

Theorem 87 (Valiant (1979)) 0/1 permanent,

#bipartite perfect matching, and #cycle cover are

#P-complete.

• By Lemma 86 (p. 648), it suffices to prove that #cycle

cover is #P-complete.

• #sat is #P-complete (p. 639).

• #3sat is #P-complete because it and #sat are

parsimoniously equivalent (p. 256).

• We shall prove that #3sat is polynomial-time

Turing-reducible to #cycle cover.
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The Proof (continued)

• Let φ be the given 3sat formula.

– It contains n variables and m clauses (hence 3m

literals).

– It has #φ satisfying truth assignments.

• First we construct a weighted directed graph H with

cycle count

#H = 43m × #φ.

• Then we construct an unweighted directed graph G.

• We make sure #H (hence #φ) is polynomial-time

Turing-reducible to G’s number of cycle covers (denoted

#G).
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The Proof: the Clause Gadget (continued)

• Each clause is associated with a clause gadget.

a

b

c

• Each edge has weight 1 unless stated otherwise.

• Each bold edge corresponds to one literal in the clause.

• There are not parallel lines as bold edges are schematic

only (preview p. 666).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 653



The Proof: the Clause Gadget (continued)

• Following a bold edge means making the literal false (0).

• A cycle cover cannot select all 3 bold edges.

– The interior node would be missing.

• Every proper nonempty subset of bold edges corresponds

to a unique cycle cover of weight 1 (see next page).
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The Proof: the Clause Gadget (continued)

7 possible cycle covers, one for each satisfying assignment:

(1) a = 0, b = 0, c = 1, (2) a = 0, b = 1, c = 0, etc.

(1) (2) (3) (4) (5) (6) (7)
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The Proof: the XOR Gadget (continued)

- 1

- 1

- 1

2

3

u

v'

u'

v

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 656



The Proof: Properties of the XOR Gadget (continued)

• The XOR gadget schema:

+

u u'

v' v

• At most one of the 2 schematic edges will be included in

a cycle cover.

• There will be 3m XOR gadgets, one for each literal.
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The Proof: Properties of the XOR Gadget (continued)

Total weight of −1 − 2 + 6 − 3 = 0 for cycle covers not

entering or leaving it.

- 1

u

v'

u'

v - 1

2

u

v'

u'

v

- 1

3

u

v'

u'

v

2

3

u

v'

u'

v

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 658



The Proof: Properties of the XOR Gadget (continued)

• Total weight of −1 + 1 − 6 + 2 + 3 + 1 = 0 for cycle

covers entering at u and leaving at v′.a

- 1

u

v'

u'

v

u

v'

u'

v

- 1

2

3

u

v'

u'

v

2

u

v'

u'

v 3

u

v'

u'

v

u

v'

u'

v

• Same for cycle covers entering at v and leaving at u′.
aCorrected by Mr. Yu-Tshung Dai (B91201046) and Mr. Che-Wei

Chang (R95922093) on December 27, 2006.
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The Proof: Properties of the XOR Gadget (continued)

• Total weight of 1 + 2 + 2 − 1 + 1 − 1 = 4 for cycle covers

entering at u and leaving at u′.

- 1

u

v'

u'

v

u

v'

u'

v

- 1

u

v'

u'

v

2

u

v'

u'

v

- 1

u

v'

u'

v

- 1 - 1

- 1
2

u

v'

u'

v

• Same for cycle covers entering at v and leaving at v′.
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The Proof: Summary (continued)

• Cycle covers not entering all of the XOR gadgets

contribute 0 to the cycle count.

– Let x denote an XOR gadget not entered for a cycle

cover c.

– Now, the said cycle covers’ total contribution is

=
∑

cycle cover c for H

weight(c)

=
∑

cycle cover c for H − x

weight(c)
∑

cycle cover c for x

weight(x)

=
∑

cycle cover c for H − x

weight(c) · 0

= 0.
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The Proof: Summary (continued)

• Cycle covers entering any of the XOR gadgets and

leaving illegally contribute 0 to the cycle count.

• For every XOR gadget entered and exited legally, the

total weight of a cycle cover is multiplied by 4.

– With an XOR gadget x entered and exited legally
fixed,

contributions of such cycle covers to the cycle count
∑

cycle cover c for H

weight(c)

=
∑

cycle cover c for H − x

weight(c)
∑

cycle cover c for x

weight(x)

=
∑

cycle cover c for H − x

weight(c) · 4.
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The Proof: Summary (continued)

• Hereafter we consider only cycle covers which enter

every XOR gadget and leaves it legally.

– Only these cycle covers contribute nonzero weights to

the cycle count.

• They are said to respect the XOR gadgets.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 663



The Proof: the Choice Gadget (continued)

• One choice gadget (a schema) for each variable.

x x

• It gives the truth assignment for the variable.

• Use it with the XOR gadget to enforce consistency.
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Schema for (w ∨ x ∨ ȳ) ∧ (x̄ ∨ ȳ ∨ z̄)

w w y y z zx x

w

x

y x

y

z

+ + ++++
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Full Graph (w ∨ x ∨ ȳ) ∧ (x̄ ∨ ȳ ∨ z̄)

w w y y z zx x

w

x

y x

y

z
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The Proof: a Key Observation (continued)

Each satisfying truth assignment to φ corresponds to a

schematic cycle cover that respects the XOR gadgets.
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w = 1, x = 0, y = 0, z = 1 ⇔ One Cycle Cover

w w y y z zx x

w

x

y x

y

z

+ + ++++
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The Proof: a Key Corollary (continued)

• Recall that there are 3m XOR gadgets.

• Each satisfying truth assignment to φ contributes 43m to

the cycle count #H.

• Hence

#H = 43m × #φ,

as desired.
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