## On P vs NP

## Density ${ }^{\text {a }}$

The density of language $L \subseteq \Sigma^{*}$ is defined as

$$
\operatorname{dens}_{L}(n)=|\{x \in L:|x| \leq n\}| .
$$

- If $L=\{0,1\}^{*}$, then $\operatorname{dens}_{L}(n)=2^{n+1}-1$.
- So the density function grows at most exponentially.
- For a unary language $L \subseteq\{0\}^{*}$,

$$
\operatorname{dens}_{L}(n) \leq n+1 .
$$

- Because $L \subseteq\{\epsilon, 0,00, \ldots, \overbrace{00 \cdots 0}^{n}, \ldots\}$.
${ }^{\text {a }}$ Berman and Hartmanis (1977).


## Sparsity

- Sparse languages are languages with polynomially bounded density functions.
- Dense languages are languages with superpolynomial density functions.


## Self-Reducibility for SAT

- An algorithm exploits self-reducibility if it reduces the problem to the same problem with a smaller size.
- Let $\phi$ be a boolean expression in $n$ variables $x_{1}, x_{2}, \ldots, x_{n}$.
- $t \in\{0,1\}^{j}$ is a partial truth assignment for $x_{1}, x_{2}, \ldots, x_{j}$.
- $\phi[t]$ denotes the expression after substituting the truth values of $t$ for $x_{1}, x_{2}, \ldots, x_{|t|}$ in $\phi$.


## An Algorithm for sat with Self-Reduction

We call the algorithm below with empty $t$.
1: if $|t|=n$ then
2: return $\phi[t]$;
3: else
4: $\quad$ return $\phi[t 0] \vee \phi[t 1]$;
5: end if
The above algorithm runs in exponential time, by visiting all the partial assignments (or nodes on a depth- $n$ binary tree).

## NP-Completeness and Density ${ }^{\text {a }}$

Theorem 78 If a unary language $U \subseteq\{0\}^{*}$ is
$N P$-complete, then $P=N P$.

- Suppose there is a reduction $R$ from sat to $U$.
- We shall use $R$ to guide us in finding the truth assignment that satisfies a given boolean expression $\phi$ with $n$ variables if it is satisfiable.
- Specifically, we use $R$ to prune the exponential-time exhaustive search on p. 611.
- The trick is to keep the already discovered results $\phi[t]$ in a table $H$.

[^0]if $|t|=n$ then
2: return $\phi[t]$;
else
if $(R(\phi[t]), v)$ is in table $H$ then return $v$; else
if $\phi[t 0]=$ "satisfiable" or $\phi[t 1]=$ "satisfiable" then
Insert $(R(\phi[t]), 1)$ into $H$; return "satisfiable"; else

Insert $(R(\phi[t]), 0)$ into $H$;
return "unsatisfiable";
end if
14: end if
15: end if

## The Proof (continued)

- Since $R$ is a reduction, $R(\phi[t])=R\left(\phi\left[t^{\prime}\right]\right)$ implies that $\phi[t]$ and $\phi\left[t^{\prime}\right]$ must be both satisfiable or unsatisfiable.
- $R(\phi[t])$ has polynomial length $\leq p(n)$ because $R$ runs in $\log$ space.
- As $R$ maps to unary numbers, there are only polynomially many $p(n)$ values of $R(\phi[t])$.
- How many nodes of the complete binary tree (of invocations/truth assignments) need to be visited?
- If that number is a polynomial, the overall algorithm runs in polynomial time and we are done.


## The Proof (continued)

- A search of the table takes time $O(p(n))$ in the random access memory model.
- The running time is $O(M p(n))$, where $M$ is the total number of invocations of the algorithm.
- The invocations of the algorithm form a binary tree of depth at most $n$.


## The Proof (continued)

- There is a set $T=\left\{t_{1}, t_{2}, \ldots\right\}$ of invocations (partial truth assignments, i.e.) such that:
$-|T| \geq(M-1) /(2 n)$.
- All invocations in $T$ are recursive (nonleaves).
- None of the elements of $T$ is a prefix of another.

3rd step: Delete all $t$ 's at most $n$ ancestors (prefixes) from further consideration


## The Proof (continued)

- All invocations $t \in T$ have different $R(\phi[t])$ values.
- None of $s, t \in T$ is a prefix of another.
- The invocation of one started after the invocation of the other had terminated.
- If they had the same value, the one that was invoked second would have looked it up, and therefore would not be recursive, a contradiction.
- The existence of $T$ implies that there are at least $(M-1) /(2 n)$ different $R(\phi[t])$ values in the table.


## The Proof (concluded)

- We already know that there are at most $p(n)$ such values.
- Hence $(M-1) /(2 n) \leq p(n)$.
- Thus $M \leq 2 n p(n)+1$.
- The running time is therefore $O(M p(n))=O\left(n p^{2}(n)\right)$.
- We comment that this theorem holds for any sparse language, not just unary ones. ${ }^{\text {a }}$

[^1]
## coNP-Completeness and Density

Theorem 79 (Fortung (1979)) If a unary language
$U \subseteq\{0\}^{*}$ is coNP-complete, then $P=N P$.

- Suppose there is a reduction $R$ from sat complement to $U$.
- The rest of the proof is basically identical except that, now, we want to make sure a formula is unsatisfiable.


## Oracles ${ }^{\text {a }}$

- We will be considering TMs with access to a "subroutine" or black box.
- This black box solves a language problem $L$ (such as sat) in one step.
- By presenting an input $x$ to the black box, in one step the black box returns "yes" or "no" depending on whether $x \in L$.
- This black box is called aptly an oracle.
${ }^{\text {a }}$ Turing (1936).


## Oracle Turing Machines

- A Turing machine $M^{\text {? }}$ with oracle is a multistring deterministic TM.
- It has a special string called the query string.
- It also has three special states:
- $q$ ? (the query state).
- $q_{\text {yes }}$ and $q_{\mathrm{no}}$ (the answer states).


## Oracle Turing Machines (concluded)

- Let $A \subseteq \Sigma^{*}$ be a language.
- From $q$ ?, $M^{?}$ moves to either $q_{\text {yes }}$ or $q_{\mathrm{no}}$ depending on whether the current query string is in $A$ or not.
- This piece of information can be used by $M^{?}$.
- Think of $A$ as a black box or a vendor-supplied subroutine.
- $M^{?}$ is otherwise like an ordinary TM.
- $M^{A}(x)$ denotes the computation of $M^{?}$ with oracle $A$ on input $x$.


## Complexity Measures of Oracle TMs

- The time complexity for oracle TMs is like that for ordinary TMs.
- Nondeterministic oracle TMs are defined in the same way.
- Let $\mathcal{C}$ be a deterministic or nondeterministic time complexity class.
- Define $\mathcal{C}^{A}$ to be the class of all languages decided (or accepted) by machines in $\mathcal{C}$ with access to oracle $A$.


## An Example

- SAT COMPLEMENT $\in \mathrm{P}^{\text {SAT }}$.
- Reverse the answer of sat oracle $A$ as our answer.

1: if $\phi \in A$ then
2: return "no"; $\{\phi$ is satisfiable. $\}$
3: else
4: return "yes"; $\{\phi$ is not satisfiable. $\}$
5: end if

- As sat complement is coNP-complete (p. 344),

$$
\operatorname{coNP} \subseteq \mathrm{P}^{\mathrm{SAT}}
$$

## The Turing Reduction

- Recall $L_{1}$ is reducible to $L_{2}$ if there is a logspace function $R$ such that $x \in L_{1} \Leftrightarrow R(x) \in L_{2}$ (p. 195).
- It is called logspace reduction, Karp reduction (p. 197), or many-one reduction.
- But the reduction in proving $L \in \mathcal{C}^{A}$ is more general.
- An algorithm B for $\mathcal{C}$ with access to $A$ exists.
- B can call $A$ many times within the resource bound.
- We say $L$ is Turing-reducible to $A$.


## Two Types of Reductions

Lemma 80 If $L_{1}$ is (logspace-) reducible to $L_{2}$, then $L_{1}$ is Turing-reducible to $L_{2}$.

- Logspace reduction is more restrictive than Turing reduction.
- It is Turing reduction with only one query to $L_{2}$.
- Note also that a language in L also belongs in P .

Corollary 81 If $L$ is complete under logspace-reductions, then $L$ is complete under Turing reductions.

## Two Types of Reductions (continued)

- Turing reduction is more general than (p. 627)—and equally valid as-logspace reduction.

- This is true even if B runs in logarithmic space and oracle $A$ is queried only once.


## Two Types of Reductions (continued)

- Turing reduction is more powerful than logspace reduction.
- For example, there are languages $A$ and $B$ such that $A$ is Turing-reducible to $B$ but not logspace-reducible to $B .{ }^{\text {a }}$
- However, for the class NP, no such separation has been proved. ${ }^{\text {b }}$

[^2]
## Two Types of Reductions (concluded)

- The Turing reduction is adaptive.
- Later queries may depend on prior queries.
- If we restrict the Turing reduction to ask all queries before receiving any answers, the reduction is called the truth-table reduction.
- Separation results exist for the Turing and truth-table reductions given some conjectures. ${ }^{\text {a }}$

[^3]
## The Power of Turing Reduction

- sat complement is not likely to be reducible to sat.
- Otherwise, coNP $=$ NP as SAT COMPLEMENT is coNP-complete (p. 344).
- But sat complement is polynomial-time Turing-reducible to SAT.
- SAT COMPLEMENT $\in \mathrm{P}^{\text {SAT }}$ (p. 625).
- True even though the oracle SAT is called only once!
- The algorithm on p. 625 is not a logspace reduction.


## Computation That Counts

## Counting Problems

- Counting problems are concerned with the number of solutions.
- \#sat: the number of satisfying truth assignments to a boolean formula.
- \#hamiltonian path: the number of Hamiltonian paths in a graph.
- They cannot be easier than their decision versions.
- The decision problem has a solution if and only if the solution count is larger than 0 .
- But they can be harder than their decision versions.


## Decision and Counting Problems

- FP is the set of polynomial-time computable functions $f:\{0,1\}^{*} \rightarrow \mathbb{Z}$.
- GCD, LCM, matrix-matrix multiplication, etc.
- If $\#$ sat $\in \mathrm{FP}$, then $\mathrm{P}=\mathrm{NP}$.
- Given boolean formula $\phi$, calculate its number of satisfying truth assignments, $k$, in polynomial time.
- Declare " $\phi \in \operatorname{SAT}$ " if and only if $k \geq 1$.
- The validity of the reverse direction is open.


## A Counting Problem Harder than Its Decision Version

- Some counting problems are harder than their decision versions.
- CYCLE asks if a directed graph contains a cycle.
- \#CYCle counts the number of cycles in a directed graph.
- CYCLE is in P by a simple greedy algorithm.
- But \#cycle is hard unless $\mathrm{P}=\mathrm{NP}$.


## Counting Class \#P

A function $f$ is in $\# \mathrm{P}$ (or $f \in \# \mathrm{P}$ ) if

- There exists a polynomial-time NTM $M$.
- $M(x)$ has $f(x)$ accepting paths for all inputs $x$.
- $f(x)=$ number of accepting paths of $M(x)$.


## Some \#P Problems

- $f(\phi)=$ number of satisfying truth assignments to $\phi$.
- The desired NTM guesses a truth assignment $T$ and accepts $\phi$ if and only if $T \models \phi$.
- Hence $f \in \#$ P.
- $f$ is also called \#SAT.
- \#hamiltonian path.
- \#3-coloring.


## \#P Completeness

- Function $f$ is \#P-complete if
$-f \in \# \mathrm{P}$.
$-\# \mathrm{P} \subseteq \mathrm{FP}^{f}$.
* Every function in \#P can be computed in polynomial time with access to a black box or oracle for $f$.
- Of course, oracle $f$ will be accessed only a polynomial number of times.
- \#P is said to be polynomial-time Turing-reducible to $f$.


## \#sat Is \#P-Complete

- First, it is in \#P (p. 637).
- Let $f \in \# \mathrm{P}$ compute the number of accepting paths of $M$.
- Cook's theorem uses a parsimonious reduction from $M$ on input $x$ to an instance $\phi$ of SAT (p. 247).
- Hence the number of accepting paths of $M(x)$ equals the number of satisfying truth assignments to $\phi$.
- Call the oracle \#sat with $\phi$ to obtain the desired answer regarding $f(x)$.


## CYCLE COVER

- A set of node-disjoint cycles that cover all nodes in a directed graph is called a cycle cover.

- There are 3 cycle covers (in red) above.


## CYCLE COVER and BIPARTITE PERFECT MATCHING

Proposition 82 cycle cover and bipartite perfect matching (p. 390) are parsimoniously reducible to each other.

- A polynomial-time algorithm creates a bipartite graph $G^{\prime}$ from any directed graph $G$.
- Moreover, the number cycle covers for $G$ equals the number of bipartite perfect matchings for $G^{\prime}$.
- And vice versa.

Corollary 83 Cycle cover $\in P$.


## Permanent

- The permanent of an $n \times n$ integer matrix $A$ is

$$
\operatorname{perm}(A)=\sum_{\pi} \prod_{i=1}^{n} A_{i, \pi(i)} .
$$

- $\pi$ ranges over all permutations of $n$ elements.
- 0/1 Permanent computes the permanent of a $0 / 1$ (binary) matrix.
- The permanent of a binary matrix is at most $n$ !.
- Simpler than determinant (5) on p. 392: no signs.
- But, surprisingly, much harder to compute than determinant!


## Permanent and Counting Perfect Matchings

- BIPARTITE PERFECT MATCHING is related to determinant (p. 393).
- \#Bipartite perfect matching is related to permanent.

Proposition 84 0/1 PERMANENT and BIPARTITE PERFECT MATCHING are parsimoniously reducible to each other.

## The Proof

- Given a bipartite graph $G$, construct an $n \times n$ binary matrix $A$.
- The $(i, j)$ th entry $A_{i j}$ is 1 if $(i, j) \in E$ and 0 otherwise.
- Then $\operatorname{perm}(A)=$ number of perfect matchings in $G$.


## Illustration of the Proof Based on p. 642 (Left)

$$
A=\left[\begin{array}{ccccc}
0 & 0 & 1 & \boxed{1} & 0 \\
0 & \boxed{1} & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & \boxed{1} \\
1 & 0 & \boxed{1} & 1 & 0 \\
\boxed{1} & 0 & 0 & 0 & 1
\end{array}\right]
$$

- $\operatorname{perm}(A)=4$.
- The permutation corresponding to the perfect matching on p. 642 is marked.


## Permanent and Counting Cycle Covers

Proposition $850 / 1$ Permanent and Cycle cover are parsimoniously reducible to each other.

- Let $A$ be the adjacency matrix of the graph on p. 642 (right).
- Then $\operatorname{perm}(A)=$ number of cycle covers.


## Three Parsimoniously Equivalent Problems

From Propositions 82 (p. 641) and 84 (p. 644), we summarize:

Lemma 86 0/1 PERMANENT, BIPARTITE PERFECT matching, and Cycle cover are parsimoniously equivalent.

We will show that the counting versions of all three problems are in fact \#P-complete.

## WEIGHTED CYCLE COVER

- Consider a directed graph $G$ with integer weights on the edges.
- The weight of a cycle cover is the product of its edge weights.
- The cycle count of $G$ is sum of the weights of all cycle covers.
- Let $A$ be $G^{\prime}$ s adjacency matrix but $A_{i j}=w_{i}$ if the edge $(i, j)$ has weight $w_{i}$.
- Then $\operatorname{perm}(A)=G$ 's cycle count (same proof as Proposition 85 on p. 647).
- \#CyCle cover is a special case: All weights are 1.


## An Example ${ }^{\text {a }}$



There are 3 cycle covers, and the cycle count is

$$
(4 \cdot 1 \cdot 1) \cdot(1)+(1 \cdot 1) \cdot(2 \cdot 3)+(4 \cdot 2 \cdot 1 \cdot 1)=18 .
$$

${ }^{\text {a }}$ Each edge has weight 1 unless stated otherwise.

## Three \#P-Complete Counting Problems

Theorem 87 (Valiant (1979)) 0/1 PERMANENT, \#BIPARTITE PERFECT MATCHING, and \#CYCLE COVER are \#P-complete.

- By Lemma 86 (p. 648), it suffices to prove that \#CYCLE COVER is \#P-complete.
- \#sat is \#P-complete (p. 639).
- \#3sAT is \#P-complete because it and \#sAT are parsimoniously equivalent (p. 256).
- We shall prove that \#3sAT is polynomial-time Turing-reducible to \#CYCLE COVER.


## The Proof (continued)

- Let $\phi$ be the given 3sat formula.
- It contains $n$ variables and $m$ clauses (hence $3 m$ literals).
- It has \# $\phi$ satisfying truth assignments.
- First we construct a weighted directed graph $H$ with cycle count

$$
\# H=4^{3 m} \times \# \phi .
$$

- Then we construct an unweighted directed graph $G$.
- We make sure $\# H$ (hence $\# \phi$ ) is polynomial-time Turing-reducible to $G$ 's number of cycle covers (denoted \#G).


## The Proof: the Clause Gadget (continued)

- Each clause is associated with a clause gadget.

- Each edge has weight 1 unless stated otherwise.
- Each bold edge corresponds to one literal in the clause.
- There are not parallel lines as bold edges are schematic only (preview p. 666).

The Proof: the Clause Gadget (continued)

- Following a bold edge means making the literal false (0).
- A cycle cover cannot select all 3 bold edges.
- The interior node would be missing.
- Every proper nonempty subset of bold edges corresponds to a unique cycle cover of weight 1 (see next page).


## The Proof: the Clause Gadget (continued)

7 possible cycle covers, one for each satisfying assignment:

$$
\text { (1) } a=0, b=0, c=1 \text {, (2) } a=0, b=1, c=0 \text {, etc. }
$$



The Proof: the XOR Gadget (continued)


The Proof: Properties of the XOR Gadget (continued)

- The XOR gadget schema:

- At most one of the 2 schematic edges will be included in a cycle cover.
- There will be $3 m$ XOR gadgets, one for each literal.

The Proof: Properties of the XOR Gadget (continued)
Total weight of $-1-2+6-3=0$ for cycle covers not entering or leaving it.

$v^{\prime}$
-

$u^{\prime}$

$\stackrel{\bullet}{v^{\prime}}$

$\stackrel{\bullet}{v}$

## The Proof: Properties of the XOR Gadget (continued)

- Total weight of $-1+1-6+2+3+1=0$ for cycle covers entering at $u$ and leaving at $v^{\prime} .^{\text {a }}$

- Same for cycle covers entering at $v$ and leaving at $u^{\prime}$.
${ }^{\text {a }}$ Corrected by Mr. Yu-Tshung Dai (B91201046) and Mr. Che-Wei Chang (R95922093) on December 27, 2006.

The Proof: Properties of the XOR Gadget (continued)

- Total weight of $1+2+2-1+1-1=4$ for cycle covers entering at $u$ and leaving at $u^{\prime}$.

- Same for cycle covers entering at $v$ and leaving at $v^{\prime}$.

The Proof: Summary (continued)

- Cycle covers not entering all of the XOR gadgets contribute 0 to the cycle count.
- Let $x$ denote an XOR gadget not entered for a cycle cover $c$.
- Now, the said cycle covers' total contribution is

$$
\begin{aligned}
& =\sum_{\text {cycle cover } c \text { for } H} \operatorname{weight}(c) \\
& =\sum_{\text {cycle cover } c \text { for } H-x} \operatorname{weight}(c) \sum_{\text {cycle cover } c \text { for } x} \operatorname{weight}(x) \\
& =\sum_{\text {cycle cover } c \text { for } H-x} \operatorname{weight}(c) \cdot 0 \\
& =0 .
\end{aligned}
$$

## The Proof: Summary (continued)

- Cycle covers entering any of the XOR gadgets and leaving illegally contribute 0 to the cycle count.
- For every XOR gadget entered and exited legally, the total weight of a cycle cover is multiplied by 4 .
- With an XOR gadget $x$ entered and exited legally fixed,
contributions of such cycle covers to the cycle count

$$
\sum \quad \text { weight }(c)
$$

cycle cover $c$ for $H$

$$
\begin{aligned}
& =\sum_{\text {cycle cover } c \text { for } H-x} \operatorname{weight}(c) \sum_{\text {cycle cover } c \text { for } x} \operatorname{weight}(x) \\
& =\sum_{\text {cycle cover } c \text { for } H-x} \operatorname{weight}(c) \cdot 4
\end{aligned}
$$

## The Proof: Summary (continued)

- Hereafter we consider only cycle covers which enter every XOR gadget and leaves it legally.
- Only these cycle covers contribute nonzero weights to the cycle count.
- They are said to respect the XOR gadgets.


## The Proof: the Choice Gadget (continued)

- One choice gadget (a schema) for each variable.

- It gives the truth assignment for the variable.
- Use it with the XOR gadget to enforce consistency.

Schema for $(w \vee x \vee \bar{y}) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})$


Full Graph $(w \vee x \vee \bar{y}) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})$


## The Proof: a Key Observation (continued)

Each satisfying truth assignment to $\phi$ corresponds to a schematic cycle cover that respects the XOR gadgets.

$$
w=1, x=0, y=0, z=1 \Leftrightarrow \text { One Cycle Cover }
$$



## The Proof: a Key Corollary (continued)

- Recall that there are $3 m$ XOR gadgets.
- Each satisfying truth assignment to $\phi$ contributes $4^{3 m}$ to the cycle count \#H.
- Hence

$$
\# H=4^{3 m} \times \# \phi,
$$

as desired.


[^0]:    ${ }^{\text {a }}$ Berman (1978).

[^1]:    ${ }^{\text {a }}$ Mahaney (1980).

[^2]:    ${ }^{\text {a }}$ Ladner, Lynch, and Selman (1975).
    ${ }^{\mathrm{b}}$ If we assume NP does not have p-measure 0 , then separation exists (Lutz and Mayordomo (1996)).

[^3]:    ${ }^{a}$ Hitchcock and Pavan (2006).

