
max cut Revisited

• The NP-complete max cut seeks to partition the nodes

of graph G = (V, E) into (S, V − S) so that there are as

many edges as possible between S and V − S (p. 290).

• Local search starts from a feasible solution and

performs “local” improvements until none are possible.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 582

A 0.5-Approximation Algorithm for max cut

1: S := ∅;
2: while ∃v ∈ V whose switching sides results in a larger

cut do

3: Switch the side of v;

4: end while

5: return S;

• A 0.12-approximation algorithm exists.a

• 0.059-approximation algorithms do not exist unless

NP = ZPP.

aGoemans and Williamson (1995).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 583

Analysis

V
3
 V
4

V
2
V
1

Optimal cut

Our cut

e
12

e
13

e
24

e
34

e
14
 e
23

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 584

Analysis (continued)

• Partition V = V1 ∪ V2 ∪ V3 ∪ V4, where our algorithm

returns (V1 ∪ V2, V3 ∪ V4) and the optimum cut is

(V1 ∪ V3, V2 ∪ V4).

• Let eij be the number of edges between Vi and Vj .

• Because no migration of nodes can improve the

algorithm’s cut, for each node in V1, its edges to V1 ∪ V2

are outnumbered by those to V3 ∪ V4.

• Considering all nodes in V1 together, we have

2e11 + e12 ≤ e13 + e14, which implies

e12 ≤ e13 + e14.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 585

Analysis (concluded)

• Similarly,

e12 ≤ e23 + e24

e34 ≤ e23 + e13

e34 ≤ e14 + e24

• Adding all four inequalities, dividing both sides by 2,

and adding the inequality

e14 + e23 ≤ e14 + e23 + e13 + e24, we obtain

e12 + e34 + e14 + e23 ≤ 2(e13 + e14 + e23 + e24).

• The above says our solution is at least half the optimum.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 586

Approximability, Unapproximability, and Between

• knapsack, node cover, maxsat, and max cut have

approximation thresholds less than 1.

– knapsack has a threshold of 0 (see p. 590).

– But node cover and maxsat have a threshold

larger than 0.

• The situation is maximally pessimistic for tsp: It

cannot be approximated unless P = NP (see p. 588).

– The approximation threshold of tsp is 1.

∗ The threshold is 1/3 if the tsp satisfies the

triangular inequality.

– The same holds for independent set.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 587

Unapproximability of tspa

Theorem 74 The approximation threshold of tsp is 1

unless P = NP.

• Suppose there is a polynomial-time ǫ-approximation

algorithm for tsp for some ǫ < 1.

• We shall construct a polynomial-time algorithm for the

NP-complete hamiltonian cycle.

• Given any graph G = (V, E), construct a tsp with |V |
cities with distances

dij =







1, if { i, j } ∈ E
|V |
1−ǫ

, otherwise

aSahni and Gonzales (1976).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 588

The Proof (concluded)

• Run the alleged approximation algorithm on this tsp.

• Suppose a tour of cost |V | is returned.

– This tour must be a Hamiltonian cycle.

• Suppose a tour with at least one edge of length |V |
1−ǫ

is

returned.

– The total length of this tour is > |V |
1−ǫ

.

– Because the algorithm is ǫ-approximate, the optimum

is at least 1 − ǫ times the returned tour’s length.

– The optimum tour has a cost exceeding |V |.
– Hence G has no Hamiltonian cycles.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 589

knapsack Has an Approximation Threshold of Zeroa

Theorem 75 For any ǫ, there is a polynomial-time

ǫ-approximation algorithm for knapsack.

• We have n weights w1, w2, . . . , wn ∈ Z
+, a weight limit

W , and n values v1, v2, . . . , vn ∈ Z
+.b

• We must find an S ⊆ {1, 2, . . . , n} such that
∑

i∈S wi ≤ W and
∑

i∈S vi is the largest possible.

• Let

V = max{v1, v2, . . . , vn}.
aIbarra and Kim (1975).
bIf the values are fractional, the result is slightly messier but the

main conclusion remains correct. Contributed by Mr. Jr-Ben Tian

(R92922045) on December 29, 2004.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 590

The Proof (continued)

• For 0 ≤ i ≤ n and 0 ≤ v ≤ nV , define W (i, v) to be the

minimum weight attainable by selecting some among the

i first items, so that their value is exactly v.

• Start with W (0, v) = ∞ for all v.

• Then

W (i + 1, v) = min{W (i, v), W (i, v − vi+1) + wi+1}.

• Finally, pick the largest v such that W (n, v) ≤ W .

• The running time is O(n2V), not polynomial time.

• Key idea: Limit the number of precision bits.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 591

The Proof (continued)

• Given the instance x = (w1, . . . , wn, W, v1, . . . , vn), we

define the approximate instance

x′ = (w1, . . . , wn, W, v′1, . . . , v
′
n),

where

v′i = 2b
⌊ vi

2b

⌋

.

• Solving x′ takes time O(n2V/2b).

• The solution S′ is close to the optimum solution S:
∑

i∈S

vi ≥
∑

i∈S′

vi ≥
∑

i∈S′

v
′

i ≥
∑

i∈S

v
′

i ≥
∑

i∈S

(vi − 2b) ≥
∑

i∈S

vi − n2b
.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 592

The Proof (continued)

• Hence
∑

i∈S′

vi ≥
∑

i∈S

vi − n2b.

• Without loss of generality, wi ≤ W (otherwise item i is

redundant).

• V is a lower bound on opt.

– Picking the item with value V alone is a legitimate

choice.

• The relative error from the optimum is ≤ n2b/V as
∑

i∈S vi −
∑

i∈S′ vi
∑

i∈S vi

≤
∑

i∈S vi −
∑

i∈S′ vi

V
≤ n2b

V
.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 593

The Proof (concluded)

• Truncate the last b = ⌊log2
ǫV
n
⌋ bits of the values.

• The algorithm becomes ǫ-approximate (see Eq. (8) on

p. 567).

• The running time is then O(n2V/2b) = O(n3/ǫ), a

polynomial in n and 1/ǫ.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 594

Pseudo-Polynomial-Time Algorithms

• Consider problems with inputs that consist of a

collection of integer parameters (tsp, knapsack, etc.).

• An algorithm for such a problem whose running time is

a polynomial of the input length and the value (not

length) of the largest integer parameter is a

pseudo-polynomial-time algorithm.a

• On p. 591, we presented a pseudo-polynomial-time

algorithm for knapsack that runs in time O(n2V).

• How about tsp (d), another NP-complete problem?

aGarey and Johnson (1978).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 595

No Pseudo-Polynomial-Time Algorithms for tsp (d)

• By definition, a pseudo-polynomial-time algorithm

becomes polynomial-time if each integer parameter is

limited to having a value polynomial in the input length.

• Corollary 38 (p. 306) showed that hamiltonian path is

reducible to tsp (d) with weights 1 and 2.

• As hamiltonian path is NP-complete, tsp (d) cannot

have pseudo-polynomial-time algorithms unless P = NP.

• tsp (d) is said to be strongly NP-hard.

• Many weighted versions of NP-complete problems are

strongly NP-hard.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 596

Polynomial-Time Approximation Scheme

• Algorithm M is a polynomial-time approximation

scheme (PTAS) for a problem if:

– For each ǫ > 0 and instance x of the problem, M

runs in time polynomial (depending on ǫ) in |x |.
∗ Think of ǫ as a constant.

– M is an ǫ-approximation algorithm for every ǫ > 0.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 597

Fully Polynomial-Time Approximation Scheme

• A polynomial-time approximation scheme is fully

polynomial (FPTAS) if the running time depends

polynomially on |x | and 1/ǫ.

– Maybe the best result for a “hard” problem.

– For instance, knapsack is fully polynomial with a

running time of O(n3/ǫ) (p. 590).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 598

Square of G

• Let G = (V, E) be an undirected graph.

• G2 has nodes {(v1, v2) : v1, v2 ∈ V } and edges

{{ (u, u′), (v, v′) } : (u = v ∧ {u′, v′ } ∈ E) ∨ {u, v } ∈ E}.

1

2

3

(1,1)

G

(1,2)
 (1,3)

(2,1)
 (2,2)
 (2,3)

(3,1)
 (3,2)
 (3,3)

G
2

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 599

Independent Sets of G and G
2

Lemma 76 G(V, E) has an independent set of size k if and

only if G2 has an independent set of size k2.

• Suppose G has an independent set I ⊆ V of size k.

• {(u, v) : u, v ∈ I} is an independent set of size k2 of G2.

1

2

3

(1,1)

G

(1,2)
 (1,3)

(2,1)
 (2,2)
 (2,3)

(3,1)
 (3,2)
 (3,3)

G
2

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 600

The Proof (continued)

• Suppose G2 has an independent set I2 of size k2.

• U ≡ {u : ∃v ∈ V (u, v) ∈ I2} is an independent set of G.

1

2

3

(1,1)

G

(1,2)
 (1,3)

(2,1)
 (2,2)
 (2,3)

(3,1)
 (3,2)
 (3,3)

G
2

• |U | is the number of “rows” that the nodes in I2 occupy.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 601

The Proof (concluded)a

• If |U | ≥ k, then we are done.

• Now assume |U | < k.

• As the k2 nodes in I2 cover fewer than k “rows,” there

must be a “row” in possession of > k nodes of I2.

• Those > k nodes will be independent in G as each “row”

is a copy of G.

aThanks to a lively class discussion on December 29, 2004.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 602

Approximability of independent set

• The approximation threshold of the maximum

independent set is either zero or one (it is one!).

Theorem 77 If there is a polynomial-time ǫ-approximation

algorithm for independent set for any 0 < ǫ < 1, then

there is a polynomial-time approximation scheme.

• Let G be a graph with a maximum independent set of

size k.

• Suppose there is an O(ni)-time ǫ-approximation

algorithm for independent set.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 603

The Proof (continued)

• By Lemma 76 (p. 600), the maximum independent set of

G2 has size k2.

• Apply the algorithm to G2.

• The running time is O(n2i).

• The resulting independent set has size ≥ (1 − ǫ) k2.

• By the construction in Lemma 76 (p. 600), we can

obtain an independent set of size ≥
√

(1 − ǫ) k2 for G.

• Hence there is a (1 −
√

1 − ǫ)-approximation algorithm

for independent set.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 604

The Proof (concluded)

• In general, we can apply the algorithm to G2ℓ

to obtain

an (1 − (1 − ǫ)2
−ℓ

)-approximation algorithm for

independent set.

• The running time is n2ℓi.a

• Now pick ℓ = ⌈log log(1−ǫ)
log(1−ǫ′)⌉.

• The running time becomes n
i

log(1−ǫ)

log(1−ǫ′) .

• It is an ǫ′-approximation algorithm for independent

set.

aIt is not fully polynomial.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 605

Comments

• independent set and node cover are reducible to

each other (Corollary 36, p. 286).

• node cover has an approximation threshold at most

0.5 (p. 573).

• But independent set is unapproximable (see the

textbook).

• independent set limited to graphs with degree ≤ k is

called k-degree independent set.

• k-degree independent set is approximable (see the

textbook).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 606

On P vs NP

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 607

Densitya

The density of language L ⊆ Σ∗ is defined as

densL(n) = |{x ∈ L : |x | ≤ n}|.

• If L = {0, 1}∗, then densL(n) = 2n+1 − 1.

• So the density function grows at most exponentially.

• For a unary language L ⊆ {0}∗,

densL(n) ≤ n + 1.

– Because L ⊆ {ǫ, 0, 00, . . . ,
n

︷ ︸︸ ︷

00 · · · 0, . . .}.
aBerman and Hartmanis (1977).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 608

Sparsity

• Sparse languages are languages with polynomially

bounded density functions.

• Dense languages are languages with superpolynomial

density functions.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 609

Self-Reducibility for sat

• An algorithm exploits self-reducibility if it reduces the

problem to the same problem with a smaller size.

• Let φ be a boolean expression in n variables

x1, x2, . . . , xn.

• t ∈ {0, 1}j is a partial truth assignment for

x1, x2, . . . , xj .

• φ[t] denotes the expression after substituting the truth

values of t for x1, x2, . . . , xt in φ.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 610

An Algorithm for sat with Self-Reduction

We call the algorithm below with empty t.

1: if | t | = n then

2: return φ[t];

3: else

4: return φ[t0] ∨ φ[t1];

5: end if

The above algorithm runs in exponential time, by visiting all

the partial assignments (or nodes on a depth-n binary tree).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 611

NP-Completeness and Densitya

Theorem 78 If a unary language U ⊆ {0}∗ is

NP-complete, then P = NP.

• Suppose there is a reduction R from sat to U .

• We shall use R to guide us in finding the truth

assignment that satisfies a given boolean expression φ

with n variables if it is satisfiable.

• Specifically, we use R to prune the exponential-time

exhaustive search on p. 611.

• The trick is to keep the already discovered results φ[t]

in a table H.

aBerman (1978).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 612

1: if | t | = n then

2: return φ[t];

3: else

4: if (R(φ[t]), v) is in table H then

5: return v;

6: else

7: if φ[t0] = “satisfiable” or φ[t1] = “satisfiable” then

8: Insert (R(φ[t]), 1) into H;

9: return “satisfiable”;

10: else

11: Insert (R(φ[t]), 0) into H;

12: return “unsatisfiable”;

13: end if

14: end if

15: end if

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 613

The Proof (continued)

• Since R is a reduction, R(φ[t]) = R(φ[t′]) implies that

φ[t] and φ[t′] must be both satisfiable or unsatisfiable.

• R(φ[t]) has polynomial length ≤ p(n) because R runs in

log space.

• As R maps to unary numbers, there are only

polynomially many p(n) values of R(φ[t]).

• How many nodes of the complete binary tree (of

invocations/truth assignments) need to be visited?

• If that number is a polynomial, the overall algorithm

runs in polynomial time and we are done.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 614

The Proof (continued)

• A search of the table takes time O(p(n)) in the random

access memory model.

• The running time is O(Mp(n)), where M is the total

number of invocations of the algorithm.

• The invocations of the algorithm form a binary tree of

depth at most n.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 615

The Proof (continued)

• There is a set T = {t1, t2, . . .} of invocations (partial

truth assignments, i.e.) such that:

– |T | ≥ (M − 1)/(2n).

– All invocations in T are recursive (nonleaves).

– None of the elements of T is a prefix of another.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 616

�VW�VWHS��'HOHWH
OHDYHV���0�−�����
QRQOHDYHV�UHPDLQLQJ

�QG�VWHS��6HOHFW�DQ\
ERWWRP�XQGHOHWHG
LQYRFDWLRQ�W�DQG�DGG
LW�WR�7

�UG�VWHS��'HOHWH�DOO�W
V
DW�PRVW�Q�DQFHVWRUV
�SUHIL[HV��IURP
IXUWKHU�FRQVLGHUDWLRQ

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 617

The Proof (continued)

• All invocations t ∈ T have different R(φ[t]) values.

– None of s, t ∈ T is a prefix of another.

– The invocation of one started after the invocation of

the other had terminated.

– If they had the same value, the one that was invoked

second would have looked it up, and therefore would

not be recursive, a contradiction.

• The existence of T implies that there are at least

(M − 1)/(2n) different R(φ[t]) values in the table.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 618

The Proof (concluded)

• We already know that there are at most p(n) such

values.

• Hence (M − 1)/(2n) ≤ p(n).

• Thus M ≤ 2np(n) + 1.

• The running time is therefore O(Mp(n)) = O(np2(n)).

• We comment that this theorem holds for any sparse

language, not just unary ones.a

aMahaney (1980).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 619

