MAX CUT Revisited

e The NP-complete MAX CUT seeks to partition the nodes
of graph G = (V, E) into (S, V — §) so that there are as

many edges as possible between S and V' — S (p. 290).

e Local search starts from a feasible solution and

performs “local” improvements until none are possible.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 582

A 0.5-Approximation Algorithm for MAX CUT
. S = @;
. while dv € V whose switching sides results in a larger
cut do
Switch the side of v;
. end while

5: return S;

e A 0.12-approximation algorithm exists.?

e 0.059-approximation algorithms do not exist unless
NP = ZPP.

2Goemans and Williamson (1995).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 583

Analysis

/ Optimal cut

Our cut /

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 584

Analysis (continued)

Partition V = V; U V5, U V3 U V4, where our algorithm
returns (V3 U Vs, V3 U Vy) and the optimum cut is
(V1 U Vs, Vo U Vy).

Let e;; be the number of edges between V; and V.

Because no migration of nodes can improve the
algorithm’s cut, for each node in V7, its edges to V3 U V5
are outnumbered by those to V3 U Vj.

Considering all nodes in V; together, we have

2611 —+ €19 S €13 + €14, which implies

e12 < e13 + €14.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 585

Analysis (concluded)

e Similarly,

€12 €23 + €24
€34 €23 + €13

€34 €14 + €24

e Adding all four inequalities, dividing both sides by 2,
and adding the inequality

€14 + €23 < €14 + €23 + €13 + €24, We obtain

e12 + €34 + €14 + €23 < 2(e13 + €14 + €23 + €24).

e The above says our solution is at least half the optimum.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 586

Approximability, Unapproximability, and Between

e KNAPSACK, NODE COVER, MAXSAT, and MAX CUT have
approximation thresholds less than 1.

— KNAPSACK has a threshold of 0 (see p. 590).
— But NODE COVER and MAXSAT have a threshold
larger than 0.
e The situation is maximally pessimistic for TSp: It
cannot be approximated unless P = NP (see p. 588).

— The approximation threshold of TSP is 1.

+ The threshold is 1/3 if the TSP satisfies the
triangular inequality.

— The same holds for INDEPENDENT SET.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 587

Unapproximability of TSp?

Theorem 74 The approrimation threshold of TSP s 1
unless P = NP.

e Suppose there is a polynomial-time e-approximation
algorithm for TSP for some € < 1.

e We shall construct a polynomial-time algorithm for the
NP-complete HAMILTONIAN CYCLE.

e Given any graph G = (V, F), construct a TSP with |V/|
cities with distances

if {i,jl € E

otherwise

2Sahni and Gonzales (1976).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 588

The Proof (concluded)

Run the alleged approximation algorithm on this TSP.

Suppose a tour of cost |V| is returned.

— This tour must be a Hamiltonian cycle.

Vi

Suppose a tour with at least one edge of length —- is

returned.

4
1—e€-

— The total length of this tour is >

Because the algorithm is e-approximate, the optimum

is at least 1 — € times the returned tour’s length.
The optimum tour has a cost exceeding | V' |.

Hence GG has no Hamiltonian cycles.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 589

KNAPSACK Has an Approximation Threshold of Zero?®

Theorem 75 For any €, there is a polynomaial-time

e-approrimation algorithm for KNAPSACK.

e We have n weights wy, wo, ..., w, € Z*, a weight limit

W, and n values vy, vo, ..., v, € Z1T.P

e We must find an S C {1,2,...,n} such that

D icswi < W and) . g v; is the largest possible.

o et

V = max{fl}1’1}2, ce ,?}n}.

2]barra and Kim (1975).

PIf the values are fractional, the result is slightly messier but the
main conclusion remains correct. Contributed by Mr. Jr-Ben Tian
(R92922045) on December 29, 2004.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 590

The Proof (continued)

For 0 <i<nand 0 <v <nV, define W(i,v) to be the
minimum weight attainable by selecting some among the

v first items, so that their value is exactly v.
Start with W (0, v) = oo for all v.

Then
Wi+ 1,v) =min{W(i,v), W(i,v—v;11) + w1}

Finally, pick the largest v such that W (n,v) < W.

The running time is O(n?V’), not polynomial time.

Key idea: Limit the number of precision bits.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 591

The Proof (continued)

e Given the instance x = (w1, ..., wy, W, v1,...,v,), we

define the approximate instance

) / /
L = (wlw"?wn)W?/Ul?""vn)’

;1 ob | Ui
=25

e Solving 2’ takes time O(n2V/2%).

e The solution S’ is close to the optimum solution S:

Zviz Zviz ZU;;ZZU;;ZZ(%—QI))ZZ%—TLQI)-

1€S ieS’ 1€57 €S €S €S

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 592

The Proof (continued)

Z’Ui 2 Zvi—nQb.

i€S’ i€S
Without loss of generality, w; < W (otherwise item 7 is
redundant).
V is a lower bound on OPT.
— Picking the item with value V' alone is a legitimate

choice.

The relative error from the optimum is < n2°/V as

— ZiES’ U <
ZiES Vs

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 593

The Proof (concluded)

e Truncate the last b = |log, <~ | bits of the values.

e The algorithm becomes e-approximate (see Eq. (8) on
p. 567).

e The running time is then O(n?V/2%) = O(n3/e¢), a

polynomial in n and 1/e.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 594

Pseudo-Polynomial-Time Algorithms

e Consider problems with inputs that consist of a

collection of integer parameters (TSP, KNAPSACK, etc.).

e An algorithm for such a problem whose running time is
a polynomial of the input length and the value (not
length) of the largest integer parameter is a

pseudo-polynomial-time algorithm.?

e On p. 591, we presented a pseudo-polynomial-time
algorithm for KNAPSACK that runs in time O(n?V).

e How about TSP (D), another NP-complete problem?

2Garey and Johnson (1978).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 595

No Pseudo-Polynomial-Time Algorithms for TSP (D)

e By definition, a pseudo-polynomial-time algorithm
becomes polynomial-time if each integer parameter is
limited to having a value polynomial in the input length.

Corollary 38 (p. 306) showed that HAMILTONIAN PATH is
reducible to TSP (D) with weights 1 and 2.

As HAMILTONIAN PATH is NP-complete, TSP (D) cannot
have pseudo-polynomial-time algorithms unless P = NP.

TSP (D) is said to be strongly NP-hard.

Many weighted versions of NP-complete problems are
strongly NP-hard.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 596

Polynomial-Time Approximation Scheme

e Algorithm M is a polynomial-time approximation
scheme (PTAS) for a problem if:

— For each € > 0 and instance x of the problem, M
runs in time polynomial (depending on €) in |z |.
x Think of € as a constant.

— M is an e-approximation algorithm for every ¢ > 0.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 597

Fully Polynomial-Time Approximation Scheme

e A polynomial-time approximation scheme is fully
polynomial (FPTAS) if the running time depends

polynomially on |z | and 1/e.
— Maybe the best result for a “hard” problem.

— For instance, KNAPSACK is fully polynomial with a
running time of O(n?/¢) (p. 590).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 598

Square of G
e Let G = (V, E) be an undirected graph.

e G2 has nodes {(v1,v2) : v1,v2 € V} and edges

H(u,u), (v,0)}: (u=vA{d v} e EyVv{uv} € FE}.

(1.1) (1.2) (1.3

1 Stz d

(29)

3 (— 75—

@) (B2 (33
G G?

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 599

Independent Sets of G and G*

Lemma 76 G(V, E) has an independent set of size k if and
only if G* has an independent set of size k°.

e Suppose GG has an independent set I C V of size k.

e {(u,v):u,v € I} is an independent set of size k% of G*.

(1,2) 1,2 1,3

®: @

(29)

@®: O

G) (G2 B3
G G?

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 600

The Proof (continued)

e Suppose G2 has an independent set I? of size k2.
e U={u:3veV(uwv) € I?}is an independent set of G.

(1,2) 1,2

(31 3,2
GZ

e | U | is the number of “rows” that the nodes in I occupy.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 601

The Proof (concluded)?
If |U| > k, then we are done.
Now assume |U | < k.

As the k? nodes in I? cover fewer than k “rows,” there

must be a “row” in possession of > k nodes of I°.

Those > k nodes will be independent in GG as each “row”

is a copy of G.

@Thanks to a lively class discussion on December 29, 2004.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 602

Approximability of INDEPENDENT SET

e The approximation threshold of the maximum

independent set is either zero or one (it is one!).

Theorem 77 If there is a polynomial-time e-approrimation
algorithm for INDEPENDENT SET for any 0 < € < 1, then

there 1s a polynomial-time approrimation scheme.

e Let G be a graph with a maximum independent set of

size k.

e Suppose there is an O(n')-time e-approximation
algorithm for INDEPENDENT SET.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 603

The Proof (continued)

By Lemma 76 (p. 600), the maximum independent set of
(G? has size k2.

Apply the algorithm to G?2.
The running time is O(n?").
The resulting independent set has size > (1 — €) k2.

By the construction in Lemma 76 (p. 600), we can
obtain an independent set of size > /(1 —¢) k2 for G.

Hence there is a (1 — /1 — €)-approximation algorithm
for INDEPENDENT SET.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 604

The Proof (concluded)

In general, we can apply the algorithm to G2’ to obtain

an (1 —(1— 6)2_£)—approximation algorithm for

INDEPENDENT SET.

The running time is n? *.2

log(1—e) ‘| .

Now pick ¢ = ﬂog log(1—¢€')

. log(l—e¢)
The running time becomes n les(—<)

It is an €¢/-approximation algorithm for INDEPENDENT
SET.

aIt is not fully polynomial.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 605

Comments

INDEPENDENT SET and NODE COVER are reducible to
each other (Corollary 36, p. 286).

NODE COVER has an approximation threshold at most
0.5 (p. 573).

But INDEPENDENT SET is unapproximable (see the
textbook).

INDEPENDENT SET limited to graphs with degree < k is
called k-DEGREE INDEPENDENT SET.

k-DEGREE INDEPENDENT SET is approximable (see the
textbook).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 606

On P vs NP

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 607

Density?

The density of language L C X* is defined as

densy(n) ={z € L:|x| < n}|.

o If L = {0,1}*, then densy(n) = 2" — 1.

e So the density function grows at most exponentially.

e For a unary language L C {0},

densy (n) <n + 1.

A~
— Because L C {¢,0,00,...,00---0,...}.

2Berman and Hartmanis (1977).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 608

Sparsity

e Sparse languages are languages with polynomially

bounded density functions.

e Dense languages are languages with superpolynomial

density functions.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 609

Self-Reducibility for SAT

An algorithm exploits self-reducibility if it reduces the

problem to the same problem with a smaller size.

Let ¢ be a boolean expression in n variables

L1y L2y yLp.

t € {0,1}7 is a partial truth assignment for

L1y, L2y, Ly

¢|t] denotes the expression after substituting the truth

values of t for x1,x9,...,2; in ¢.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 610

An Algorithm for SAT with Self-Reduction

We call the algorithm below with empty ¢.
. if |t| = n then
return ¢|t];

return ¢[t0]|V ¢[t1];

1
2
3: else
4
5. end if

The above algorithm runs in exponential time, by visiting all

the partial assignments (or nodes on a depth-n binary tree).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 611

NP-Completeness and Density?

Theorem 78 If a unary language U C {0}* is
NP-complete, then P = NP.

e Suppose there is a reduction R from SAT to U.

e We shall use R to guide us in finding the truth
assignment that satisfies a given boolean expression ¢

with n variables if it is satisfiable.

e Specifically, we use R to prune the exponential-time

exhaustive search on p. 611.

e The trick is to keep the already discovered results ¢|t]
in a table H.

2Berman (1978).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 612

if || =n then
return ¢|t|;
else
if (R(¢[t]),v) is in table H then
return v;
else
if ¢[t0] = “satisfiable” or ¢[t1] = “satisfiable” then
Insert (R(¢[t]),1) into H;

return “satisfiable”;

1:
2:
3:
4:
5:
6:
7
8:
9:

else
Insert (R(¢[t]),0) into H;
return “unsatisfiable”;
end if
end if
. end if

e
Ny 22

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 613

The Proof (continued)

Since R is a reduction, R(¢[t]) = R(¢[t’]) implies that
¢[t] and ¢[t' | must be both satisfiable or unsatisfiable.

R(¢[t]) has polynomial length < p(n) because R runs in

log space.

As R maps to unary numbers, there are only

polynomially many p(n) values of R(¢[t]).

How many nodes of the complete binary tree (of

invocations/truth assignments) need to be visited?

If that number is a polynomial, the overall algorithm

runs in polynomial time and we are done.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 614

The Proof (continued)

e A search of the table takes time O(p(n)) in the random

access memory model.

e The running time is O(Mp(n)), where M is the total

number of invocations of the algorithm.

e The invocations of the algorithm form a binary tree of

depth at most n.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 615

The Proof (continued)

e There is a set T = {t1,to,...} of invocations (partial

truth assignments, i.e.) such that:
= [T = (M =1)/(2n).
— All invocations in T are recursive (nonleaves).

— None of the elements of 71" is a prefix of another.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 616

3rd step: Delete all #'s

at most » ancestors

(prefixes) from

further consideration 2nd step: Select any

bottom undeleted
invocation ¢ and add
itto T

\ Ist step: Delete
leaves; (M —1)/2

nonleaves remaining

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 617

The Proof (continued)

e All invocations t € T have different R(¢[t]) values.

— None of s,t € T is a prefix of another.

— The invocation of one started after the invocation of
the other had terminated.

— If they had the same value, the one that was invoked
second would have looked it up, and therefore would

not be recursive, a contradiction.

e The existence of 1" implies that there are at least
(M —1)/(2n) different R(¢[t]) values in the table.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 618

The Proof (concluded)

We already know that there are at most p(n) such

values.

Hence (M —1)/(2n) < p(n).

Thus M < 2np(n) + 1.

The running time is therefore O(Mp(n)) = O(np?(n)).

We comment that this theorem holds for any sparse

language, not just unary ones.?

@Mahaney (1980).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 619

