What Is a Proof?

A proof convinces a party of a certain claim.

— “Is g™ +y™ # 2" for all z,y,2 € ZT and n > 27"

— “Is graph G Hamiltonian?”
— “Is P = x mod p for prime p and p fx?”
In mathematics, a proof is a fixed sequence of theorems.

— Think of a written examination.

We will extend a proof to cover a proof process by which

the validity of the assertion is established.

— Think of a job interview or an oral examination.
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Prover and Verifier

There are two parties to a proof.
— The prover (Peggy).
— The verifier (Victor).

Given an assertion, the prover’s goal is to convince the

verifier of its validity (completeness).

The verifier’s objective is to accept only correct

assertions (soundness).
The verifier usually has an easier job than the prover.

e The setup is very much like the Turing test.?

2Turing (1950).
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Interactive Proof Systems

An interactive proof for a language L is a sequence of

questions and answers between the two parties.

At the end of the interaction, the verifier decides based
on the knowledge he acquired in the proof process

whether the claim is true or false.

The verifier must be a probabilistic polynomial-time
algorithm.
The prover runs an exponential-time algorithm.

— If the prover is not more powerful than the verifier,

no interaction is needed.
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Interactive Proof Systems (concluded)

e The system decides L if the following two conditions

hold for any common input z.

— If x € L, then the probability that x is accepted by

the verifier is at least 1 — 2~ 121

— If = ¢ L, then the probability that x is accepted by
the verifier with any prover replacing the original

prover 1s at most oIl

e Neither the number of rounds nor the lengths of the

messages can be more than a polynomial of |z |.
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An Interactive Proof
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P2

e IP is the class of all languages decided by an interactive

proof system.

e When x € L, the completeness condition can be

modified to require that the verifier accepts with

certainty without affecting IP.P

e Similar things cannot be said of the soundness condition
when x & L.

e Verifier’s coin flips can be public.°©

2Goldwasser, Micali, and Rackoff (1985).

PGoldreich, Mansour, and Sipser (1987).
°Goldwasser and Sipser (1989).
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The Relations of IP with Other Classes
e NP C IP.

— IP becomes NP when the verifier is deterministic.

e BPP C IP.
— IP becomes BPP when the verifier ignores the

prover’s messages.

e [P actually coincides with PSPACE (see the textbook

for a proof).?

aShamir (1990).
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Graph Isomorphism

V1 — VQ — {1,2,...,77,}.
Graphs Gl = (Vl,E1> and G2 = (VQ,EQ) are

isomorphic if there exists a permutation 7 on
{1,2,...,n} so that (u,v) € Fh < (n(u), 7(v)) € Es.

The task is to answer if G; = G5 (isomorphic).
No known polynomial-time algorithms.
The problem is in NP (hence IP).

But it is not likely to be NP-complete.?

2Schoning (1987).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 537



GRAPH NONISOMORPHISM

Vl — V2 — {1,2,...,%}.
Graphs G1 = (Vl,El) and G2 = (VQ,EQ) are

nonisomorphic if there exist no permutations 7 on
{1,2,...,n} so that (u,v) € By < (7(u),n(v)) € Es.

The task is to answer if G; 2 G2 (nonisomorphic).

Again, no known polynomial-time algorithms.
— It is in coNP, but how about NP or BPP?
— It is not likely to be coNP-complete.

e Surprisingly, GRAPH NONISOMORPHISM € [P.?

2Goldreich, Micali, and Wigderson (1986).
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A 2-Round Algorithm

Victor selects a random i € {1,2 };
Victor selects a random permutation m on {1,2,...,n };
Victor applies m on graph GG; to obtain graph H;
Victor sends (G1, H) to Peggy;
if G1 =2 H then
Peggy sends 7 = 1 to Victor;
else
Peggy sends 7 = 2 to Victor;
end if

if 1 =14 then

1:
2:
3:
4:
5%
6:
7
8:
9:

—_ =
)

Victor accepts;

- else

—_
_O:Dl\.')

Victor rejects;
: end if

[
e~
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Analysis

e Victor runs in probabilistic polynomial time.

e Suppose the two graphs are not isomorphic.
— Peggy is able to tell which G; is isomorphic to H.

— So Victor always accepts.

e Suppose the two graphs are isomorphic.

— No matter which ¢ is picked by Victor, Peggy or any

prover sees 2 identical graphs.

— Peggy or any prover with exponential power has only

probability one half of guessing ¢ correctly.

— So Victor erroneously accepts with probability 1/2.

e Repeat the algorithm to obtain the desired probabilities.
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Knowledge in Proofs

e Suppose I know a satisfying assignment to a satisfiable

boolean expression.
e [ can convince Alice of this by giving her the assignment.

e But then I give her more knowledge than necessary.
— Alice can claim that she found the assignment!
— Login authentication faces essentially the same issue.

— See
www.wired.com/wired/archive/1.05/atm_pr.html

for a famous ATM fraud in the U.S.
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Knowledge in Proofs (concluded)

Digital signatures authenticate documents but not

individuals.
They hence do not solve the problem.
Suppose I always give Alice random bits.

Alice extracts no knowledge from me by any measure,

but I prove nothing.

Question 1: Can we design a protocol to convince Alice
of (the knowledge of) a secret without revealing

anything extra?

Question 2: How to define this idea rigorously?
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Zero Knowledge Proofs®

An interactive proof protocol (P, V') for language L has the

perfect zero-knowledge property if:

e For every verifier V’, there is an algorithm M with

expected polynomial running time.

e )M on any input x € L generates the same probability
distribution as the one that can be observed on the

communication channel of (P, V") on input z.

2Goldwasser, Micali, and Rackoff (1985).
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Comments

e Zero knowledge is a property of the prover.

— It is the robustness of the prover against attempts of

the verifier to extract knowledge via interaction.

The verifier may deviate arbitrarily (but in

polynomial time) from the predetermined program.

A verifier cannot use the transcript of the interaction

to convince a third-party of the validity of the claim.

The proof is hence not transferable.
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Comments (continued)

Whatever a verifier can “learn” from the specified prover
P via the communication channel could as well be
computed from the verifier alone.

The verifier does not learn anything except “x € L.”

For all practical purposes “whatever” can be done after
interacting with a zero-knowledge prover can be done by
just believing that the claim is indeed valid.

Zero-knowledge proofs yield no knowledge in the sense
that they can be constructed by the verifier who believes
the statement, and yet these proofs do convince him.
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Comments (continued)

The “paradox” is resolved by noting that it is not the

transcript of the conversation that convinces the verifier.
But the fact that this conversation was held “on line.”
There is no zero-knowledge requirement when = ¢ L.

Computational zero-knowledge proofs are based on

complexity assumptions.

— M only needs to generate a distribution that is
computationally indistinguishable from the verifier’s

view of the interaction.
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Comments (concluded)

e It is known that if one-way functions exist, then

zero-knowledge proofs exist for every problem in NP.?

e The verifier can be restricted to the honest one (i.e., it

follows the protocol).P

e The coins can be public.©

2Goldreich, Micali, and Wigderson (1986).

bVadhan (2006).
“Vadhan (2006).
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Are You Convinced?

e A newspaper commercial for hair-growing products for
men.
— A (for all practical purposes) bald man has a full
head of hair after 3 months.

e A TV commercial for weight-loss products.

— A (by any reasonable measure) overweight woman

loses 10 kilograms in 10 weeks.
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Quadratic Residuacity

e Let n be a product of two distinct primes.

e Assume extracting the square root of a quadratic residue

modulo n is hard without knowing the factors.

e We next present a zero-knowledge proof for x being a

quadratic residue.
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Zero-Knowledge Proof of Quadratic Residuacity
(continued)

1. form=1,2,...,logyn do
Peggy chooses a random v € Z and sends
y = v? mod n to Victor;
Victor chooses a random bit ¢ and sends it to Peggy;
Peggy sends z = u'v mod n, where u is a square root
of z; {u® = x mod n.}
Victor checks if z? = 2'y mod n;

6: end for

7: Victor accepts x if Line 5 is confirmed every time;
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Analysis

e Suppose z is a quadratic nonresidue.
— Peggy can answer only one of the two possible
challenges.
x Reason: a is a quadratic residue if and only if xa is

a quadratic nonresidue.

— So Peggy will be caught in any given round with
probability one half.
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Analysis (continued)

Suppose x is a quadratic residue.
— Peggy can answer all challenges.

— So Victor will accept x.
How about the claim of zero knowledge?

The transcript between Peggy and Victor when x is a

quadratic residue can be generated without Peggy!

— So interaction with Peggy is useless.

Here is how.
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Analysis (continued)

e Suppose x is a quadratic residue.?

e In each round of interaction with Peggy, the transcript is

a triplet (y,1, 2).

e We present an efficient Bob that generates (y, i, z) with
the same probability without accessing Peggy.

2By definition, we do not need to consider the other case.
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Analysis (concluded)

: Bob chooses a random 2z € Z;

. Bob chooses a random bit ;

2

. Bob calculates y = 2?2~ mod n;

. Bob writes (y, 7, z) into the transcript;
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Comments
e Assume x is a quadratic residue.

e In both cases, for (y,1, z), y is a random quadratic

residue, 7 is a random bit, and z is a random number.

e Bob cheats because (y, 1, z) is not generated in the same

order as in the original transcript.
— Bob picks Victor’s challenge first.
— Bob then picks Peggy’s answer.
— Bob finally patches the transcript.
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Comments (concluded)

e So it is not the transcript that convinces Victor, but

that conversation with Peggy is held “on line.”

e The same holds even if the transcript was generated by

a cheating Victor’s interaction with (honest) Peggy.

e But we skip the details.
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Does the Following Work, Too??

: for m=1,2,...,logyn do
Peggy chooses a random v € Z and sends

y = v? mod n to Victor;

Peggy sends z = uv mod n, where u is a square root of

z; {u?* = r mod n.}

Victor checks if 2?2 = zy mod n;
. end for

. Victor accepts z if Line 4 is confirmed every time;

@Thanks to a lively discussion on December 13, 2006. It is like choos-

ing ¢ = 1 in the original protocol.
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A Useful Corollary

Corollary 73 Let n = pq be a product of two distinct
primes. Then xy € Z7 1s a quadratic residue modulo n if
and only if x and y are both quadratic residues or quadratic

nonresidues modulo n.

e By Lemma 72 (p. 525), xy is a quadratic residue if and
only if (zy|p) = (zy|q) = 1.

e This holds if and only if (z|p)(y|p) = (x|q)(y|q) = 1.
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The Proof (concluded)

Now,
(z|p)(ylp) =(z]g)(y|q) =1
if and only if

(z]p)(z|q) = (y|p)(ylqg) =1

because Legendre symbols are 4-1.

But the above holds if and only if  and y are both
quadratic residues or quadratic nonresidues modulo n,

again by Lemma 72.
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Does the Following Work, Too? (concluded)

Suppose x is a quadratic nonresidue.
But Peggy can mislead Victor.
Peggy first chooses a quadratic nonresidue y.

2

She can solve z° = zy mod n (see Corollary 73 on

p. 558).
Finally, she sends y and z to Victor.
This pair will satisfy z? = zy mod n by construction.

The protocol is hence not even an IP protocol!
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/Zero-Knowledge Proof of 3 Colorability?
1: fori=1,2,...,|E|* do
Peggy chooses a random permutation 7 of the 3-coloring ¢;

Peggy samples an encryption scheme randomly and sends

w(p(1)), m(d(2)),...,m(¢(|V])) encrypted to Victor;

Victor chooses at random an edge e € E' and sends it to

Peggy for the coloring of the endpoints of e;

if e = (u,v) € F then

Peggy reveals the coloring of © and v and “proves” that

they correspond to their encryption;
else
Peggy stops;
end if
2Goldreich, Micali, and Wigderson (1986).
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if the “proot” provided in Line 6 is not valid then

Victor rejects and stops;
end if

if m(p(u)) = m(p(v)) or w(e(u)), m(¢(v)) & {1,2,3} then

Victor rejects and stops;
end if
: end for

. Victor accepts;
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Analysis

If the graph is 3-colorable and both Peggy and Victor

follow the protocol, then Victor always accepts.

If the graph is not 3-colorable and Victor follows the

protocol, then however Peggy plays, Victor will accept
with probability < (1—m~1)™ < e™™, where m = | E|.

Thus the protocol is valid.

This protocol yields no knowledge to Victor as all he

gets is a bunch of random pairs.

The proof that the protocol is zero-knowledge to any

verifier is intricate.
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Approximability
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Tackling Intractable Problems

Many important problems are NP-complete or worse.
Heuristics have been developed to attack them.
They are approximation algorithms.

How good are the approximations?
— We are looking for theoretically guaranteed bounds,

not “empirical” bounds.

Are there NP problems that cannot be approximated
well (assuming NP # P)?

Are there NP problems that cannot be approximated at
all (assuming NP # P)?
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Some Definitions

Given an optimization problem, each problem

instance = has a set of feasible solutions F'(x).
Each feasible solution s € F/(x) has a cost ¢(s) € Z*.

The optimum cost is OPT(z) = min,c p(5) c(s) for a

minimization problem.

It is OPT(x) = maXsc p(s) ¢(s) for a maximization

problem.
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Approximation Algorithms
e Let algorithm M on x returns a feasible solution.

e )M is an e-approximation algorithm, where ¢ > 0, if

for all z,
e(M(x) — oPT(x)| _
max(OPT(x),c(M(x))) =

— For a minimization problem,

o(M(x)) — minye pa) ()
(M (x)) =€

— For a maximization problem,

MaXse F(x) C(S) - C(M(:U))

MaXsec F(x) C<S>

< €
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Lower and Upper Bounds

e For a minimization problem,

min c¢(s) < c¢(M(x)) < il (z) €(5)
seF (x) 1 —e¢

minsEF(x) C(S) > 1 — €

— 50 approximation ratio — 75

e For a maximization problem,

1— < o(M(z)) < .
( dxiggf@)_di(@)_£$%f®>

(M@) 5 _ .

maXscF(x) C<8) T

— So approximation ratio

e The above are alternative definitions of e-approximation

algorithms.
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Range Bounds
e takes values between 0 and 1.

For maximization problems, an e-approximation

algorithm returns solutions within [ (1 — €¢) X OPT, OPT|.

For minimization problems, an e-approximation

algorithm returns solutions within [opT, 2= |.

For each NP-complete optimization problem, we shall be
interested in determining the smallest € for which there

is a polynomial-time e-approximation algorithm.

Sometimes € has no minimum value.
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Approximation Thresholds

The approximation threshold is the greatest lower
bound of all € > 0 such that there is a polynomial-time

e-approximation algorithm.

The approximation threshold of an optimization problem
can be anywhere between 0 (approximation to any

desired degree) and 1 (no approximation is possible).

If P = NP, then all optimization problems in NP have

an approximation threshold of 0.

So we assume P # NP for the rest of the discussion.
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NODE COVER

NODE COVER seeks the smallest C' C V' in graph
G = (V, E) such that for each edge in E, at least one of

its endpoints is in C.

A heuristic to obtain a good node cover is to iteratively

move a node with the highest degree to the cover.

This turns out to produce

c(M(x))

oPT(z) = O(logn).

'n).

Hence the approximation ratio is ©(log™

It is not an e-approximation algorithm for any € < 1.
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A 0.5-Approximation Algorithm?
. C = ();
. while F # () do
Delete an arbitrary edge { u,v } from F;

Delete edges incident with v and v from FE;

Add u and v to C; {Add 2 nodes to C' each time.}

. end while

. return C

2Johnson (1974).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 572



Analysis
C' contains |C|/2 edges.
No two edges of C share a node.

Any node cover must contain at least one node from
each of these edges.

This means that opT(G) > |C|/2.
S0

oPT(G)
C]

The approximation threshold is < 0.5.

> 1/2.

We remark that 0.5 is also the lower bound for any

“oreedy” algorithms.?

2Davis and Impagliazzo (2004).
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The 0.5 Bound Is Tight for the Algorithm?

2Contributed by Mr. Jeng-Chung Li (R92922087) on December 20,
2003.
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