
What Is a Proof?

• A proof convinces a party of a certain claim.

– “Is xn + yn 6= zn for all x, y, z ∈ Z
+ and n > 2?”

– “Is graph G Hamiltonian?”

– “Is xp = x mod p for prime p and p 6 |x?”

• In mathematics, a proof is a fixed sequence of theorems.

– Think of a written examination.

• We will extend a proof to cover a proof process by which

the validity of the assertion is established.

– Think of a job interview or an oral examination.
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Prover and Verifier

• There are two parties to a proof.

– The prover (Peggy).

– The verifier (Victor).

• Given an assertion, the prover’s goal is to convince the

verifier of its validity (completeness).

• The verifier’s objective is to accept only correct

assertions (soundness).

• The verifier usually has an easier job than the prover.

• The setup is very much like the Turing test.a

aTuring (1950).
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Interactive Proof Systems

• An interactive proof for a language L is a sequence of

questions and answers between the two parties.

• At the end of the interaction, the verifier decides based

on the knowledge he acquired in the proof process

whether the claim is true or false.

• The verifier must be a probabilistic polynomial-time

algorithm.

• The prover runs an exponential-time algorithm.

– If the prover is not more powerful than the verifier,

no interaction is needed.
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Interactive Proof Systems (concluded)

• The system decides L if the following two conditions

hold for any common input x.

– If x ∈ L, then the probability that x is accepted by

the verifier is at least 1 − 2−|x |.

– If x 6∈ L, then the probability that x is accepted by

the verifier with any prover replacing the original

prover is at most 2−|x |.

• Neither the number of rounds nor the lengths of the

messages can be more than a polynomial of |x |.
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An Interactive Proof
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IPa

• IP is the class of all languages decided by an interactive

proof system.

• When x ∈ L, the completeness condition can be

modified to require that the verifier accepts with

certainty without affecting IP.b

• Similar things cannot be said of the soundness condition

when x 6∈ L.

• Verifier’s coin flips can be public.c

aGoldwasser, Micali, and Rackoff (1985).
bGoldreich, Mansour, and Sipser (1987).
cGoldwasser and Sipser (1989).
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The Relations of IP with Other Classes

• NP ⊆ IP.

– IP becomes NP when the verifier is deterministic.

• BPP ⊆ IP.

– IP becomes BPP when the verifier ignores the

prover’s messages.

• IP actually coincides with PSPACE (see the textbook

for a proof).a

aShamir (1990).
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Graph Isomorphism

• V1 = V2 = {1, 2, . . . , n}.

• Graphs G1 = (V1, E1) and G2 = (V2, E2) are

isomorphic if there exists a permutation π on

{1, 2, . . . , n} so that (u, v) ∈ E1 ⇔ (π(u), π(v)) ∈ E2.

• The task is to answer if G1
∼= G2 (isomorphic).

• No known polynomial-time algorithms.

• The problem is in NP (hence IP).

• But it is not likely to be NP-complete.a

aSchöning (1987).
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graph nonisomorphism

• V1 = V2 = {1, 2, . . . , n}.

• Graphs G1 = (V1, E1) and G2 = (V2, E2) are

nonisomorphic if there exist no permutations π on

{1, 2, . . . , n} so that (u, v) ∈ E1 ⇔ (π(u), π(v)) ∈ E2.

• The task is to answer if G1 6∼= G2 (nonisomorphic).

• Again, no known polynomial-time algorithms.

– It is in coNP, but how about NP or BPP?

– It is not likely to be coNP-complete.

• Surprisingly, graph nonisomorphism ∈ IP.a

aGoldreich, Micali, and Wigderson (1986).
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A 2-Round Algorithm
1: Victor selects a random i ∈ { 1, 2 };

2: Victor selects a random permutation π on { 1, 2, . . . , n };

3: Victor applies π on graph Gi to obtain graph H;

4: Victor sends (G1, H) to Peggy;

5: if G1
∼= H then

6: Peggy sends j = 1 to Victor;

7: else

8: Peggy sends j = 2 to Victor;

9: end if

10: if j = i then

11: Victor accepts;

12: else

13: Victor rejects;

14: end if
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Analysis

• Victor runs in probabilistic polynomial time.

• Suppose the two graphs are not isomorphic.

– Peggy is able to tell which Gi is isomorphic to H.

– So Victor always accepts.

• Suppose the two graphs are isomorphic.

– No matter which i is picked by Victor, Peggy or any

prover sees 2 identical graphs.

– Peggy or any prover with exponential power has only

probability one half of guessing i correctly.

– So Victor erroneously accepts with probability 1/2.

• Repeat the algorithm to obtain the desired probabilities.
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Knowledge in Proofs

• Suppose I know a satisfying assignment to a satisfiable

boolean expression.

• I can convince Alice of this by giving her the assignment.

• But then I give her more knowledge than necessary.

– Alice can claim that she found the assignment!

– Login authentication faces essentially the same issue.

– See

www.wired.com/wired/archive/1.05/atm pr.html

for a famous ATM fraud in the U.S.
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Knowledge in Proofs (concluded)

• Digital signatures authenticate documents but not

individuals.

• They hence do not solve the problem.

• Suppose I always give Alice random bits.

• Alice extracts no knowledge from me by any measure,

but I prove nothing.

• Question 1: Can we design a protocol to convince Alice

of (the knowledge of) a secret without revealing

anything extra?

• Question 2: How to define this idea rigorously?
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Zero Knowledge Proofsa

An interactive proof protocol (P, V ) for language L has the

perfect zero-knowledge property if:

• For every verifier V ′, there is an algorithm M with

expected polynomial running time.

• M on any input x ∈ L generates the same probability

distribution as the one that can be observed on the

communication channel of (P, V ′) on input x.

aGoldwasser, Micali, and Rackoff (1985).
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Comments

• Zero knowledge is a property of the prover.

– It is the robustness of the prover against attempts of

the verifier to extract knowledge via interaction.

– The verifier may deviate arbitrarily (but in

polynomial time) from the predetermined program.

– A verifier cannot use the transcript of the interaction

to convince a third-party of the validity of the claim.

– The proof is hence not transferable.
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Comments (continued)

• Whatever a verifier can “learn” from the specified prover

P via the communication channel could as well be

computed from the verifier alone.

• The verifier does not learn anything except “x ∈ L.”

• For all practical purposes “whatever” can be done after

interacting with a zero-knowledge prover can be done by

just believing that the claim is indeed valid.

• Zero-knowledge proofs yield no knowledge in the sense

that they can be constructed by the verifier who believes

the statement, and yet these proofs do convince him.
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Comments (continued)

• The “paradox” is resolved by noting that it is not the

transcript of the conversation that convinces the verifier.

• But the fact that this conversation was held “on line.”

• There is no zero-knowledge requirement when x 6∈ L.

• Computational zero-knowledge proofs are based on

complexity assumptions.

– M only needs to generate a distribution that is

computationally indistinguishable from the verifier’s

view of the interaction.
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Comments (concluded)

• It is known that if one-way functions exist, then

zero-knowledge proofs exist for every problem in NP.a

• The verifier can be restricted to the honest one (i.e., it

follows the protocol).b

• The coins can be public.c

aGoldreich, Micali, and Wigderson (1986).
bVadhan (2006).
cVadhan (2006).
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Are You Convinced?

• A newspaper commercial for hair-growing products for

men.

– A (for all practical purposes) bald man has a full

head of hair after 3 months.

• A TV commercial for weight-loss products.

– A (by any reasonable measure) overweight woman

loses 10 kilograms in 10 weeks.
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Quadratic Residuacity

• Let n be a product of two distinct primes.

• Assume extracting the square root of a quadratic residue

modulo n is hard without knowing the factors.

• We next present a zero-knowledge proof for x being a

quadratic residue.
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Zero-Knowledge Proof of Quadratic Residuacity
(continued)

1: for m = 1, 2, . . . , log2 n do

2: Peggy chooses a random v ∈ Z∗
n and sends

y = v2 mod n to Victor;

3: Victor chooses a random bit i and sends it to Peggy;

4: Peggy sends z = uiv mod n, where u is a square root

of x; {u2 ≡ x mod n.}

5: Victor checks if z2 ≡ xiy mod n;

6: end for

7: Victor accepts x if Line 5 is confirmed every time;
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Analysis

• Suppose x is a quadratic nonresidue.

– Peggy can answer only one of the two possible

challenges.

∗ Reason: a is a quadratic residue if and only if xa is

a quadratic nonresidue.

– So Peggy will be caught in any given round with

probability one half.
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Analysis (continued)

• Suppose x is a quadratic residue.

– Peggy can answer all challenges.

– So Victor will accept x.

• How about the claim of zero knowledge?

• The transcript between Peggy and Victor when x is a

quadratic residue can be generated without Peggy!

– So interaction with Peggy is useless.

• Here is how.
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Analysis (continued)

• Suppose x is a quadratic residue.a

• In each round of interaction with Peggy, the transcript is

a triplet (y, i, z).

• We present an efficient Bob that generates (y, i, z) with

the same probability without accessing Peggy.

aBy definition, we do not need to consider the other case.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 553



Analysis (concluded)

1: Bob chooses a random z ∈ Z∗
n;

2: Bob chooses a random bit i;

3: Bob calculates y = z2x−i mod n;

4: Bob writes (y, i, z) into the transcript;
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Comments

• Assume x is a quadratic residue.

• In both cases, for (y, i, z), y is a random quadratic

residue, i is a random bit, and z is a random number.

• Bob cheats because (y, i, z) is not generated in the same

order as in the original transcript.

– Bob picks Victor’s challenge first.

– Bob then picks Peggy’s answer.

– Bob finally patches the transcript.
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Comments (concluded)

• So it is not the transcript that convinces Victor, but

that conversation with Peggy is held “on line.”

• The same holds even if the transcript was generated by

a cheating Victor’s interaction with (honest) Peggy.

• But we skip the details.
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Does the Following Work, Too?a

1: for m = 1, 2, . . . , log2 n do

2: Peggy chooses a random v ∈ Z∗
n and sends

y = v2 mod n to Victor;

3: Peggy sends z = uv mod n, where u is a square root of

x; {u2 ≡ x mod n.}

4: Victor checks if z2 ≡ xy mod n;

5: end for

6: Victor accepts x if Line 4 is confirmed every time;

aThanks to a lively discussion on December 13, 2006. It is like choos-

ing i = 1 in the original protocol.
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A Useful Corollary

Corollary 73 Let n = pq be a product of two distinct

primes. Then xy ∈ Z∗
n is a quadratic residue modulo n if

and only if x and y are both quadratic residues or quadratic

nonresidues modulo n.

• By Lemma 72 (p. 525), xy is a quadratic residue if and

only if (xy | p) = (xy | q) = 1.

• This holds if and only if (x | p)(y | p) = (x | q)(y | q) = 1.
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The Proof (concluded)

• Now,

(x | p)(y | p) = (x | q)(y | q) = 1

if and only if

(x | p)(x | q) = (y | p)(y | q) = 1

because Legendre symbols are ±1.

• But the above holds if and only if x and y are both

quadratic residues or quadratic nonresidues modulo n,

again by Lemma 72.
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Does the Following Work, Too? (concluded)

• Suppose x is a quadratic nonresidue.

• But Peggy can mislead Victor.

• Peggy first chooses a quadratic nonresidue y.

• She can solve z2 = xy mod n (see Corollary 73 on

p. 558).

• Finally, she sends y and z to Victor.

• This pair will satisfy z2 ≡ xy mod n by construction.

• The protocol is hence not even an IP protocol!
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Zero-Knowledge Proof of 3 Colorabilitya

1: for i = 1, 2, . . . , |E |2 do

2: Peggy chooses a random permutation π of the 3-coloring φ;

3: Peggy samples an encryption scheme randomly and sends

π(φ(1)), π(φ(2)), . . . , π(φ(|V |)) encrypted to Victor;

4: Victor chooses at random an edge e ∈ E and sends it to

Peggy for the coloring of the endpoints of e;

5: if e = (u, v) ∈ E then

6: Peggy reveals the coloring of u and v and “proves” that

they correspond to their encryption;

7: else

8: Peggy stops;

9: end if

aGoldreich, Micali, and Wigderson (1986).
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10: if the “proof” provided in Line 6 is not valid then

11: Victor rejects and stops;

12: end if

13: if π(φ(u)) = π(φ(v)) or π(φ(u)), π(φ(v)) 6∈ {1, 2, 3} then

14: Victor rejects and stops;

15: end if

16: end for

17: Victor accepts;
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Analysis

• If the graph is 3-colorable and both Peggy and Victor

follow the protocol, then Victor always accepts.

• If the graph is not 3-colorable and Victor follows the

protocol, then however Peggy plays, Victor will accept

with probability ≤ (1−m−1)m2

≤ e−m, where m = |E |.

• Thus the protocol is valid.

• This protocol yields no knowledge to Victor as all he

gets is a bunch of random pairs.

• The proof that the protocol is zero-knowledge to any

verifier is intricate.
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Approximability
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Tackling Intractable Problems

• Many important problems are NP-complete or worse.

• Heuristics have been developed to attack them.

• They are approximation algorithms.

• How good are the approximations?

– We are looking for theoretically guaranteed bounds,

not “empirical” bounds.

• Are there NP problems that cannot be approximated

well (assuming NP 6= P)?

• Are there NP problems that cannot be approximated at

all (assuming NP 6= P)?
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Some Definitions

• Given an optimization problem, each problem

instance x has a set of feasible solutions F (x).

• Each feasible solution s ∈ F (x) has a cost c(s) ∈ Z
+.

• The optimum cost is opt(x) = mins∈F (x) c(s) for a

minimization problem.

• It is opt(x) = maxs∈F (x) c(s) for a maximization

problem.
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Approximation Algorithms

• Let algorithm M on x returns a feasible solution.

• M is an ǫ-approximation algorithm, where ǫ ≥ 0, if

for all x,
|c(M(x)) − opt(x)|

max(opt(x), c(M(x)))
≤ ǫ.

– For a minimization problem,

c(M(x)) − mins∈F (x) c(s)

c(M(x))
≤ ǫ.

– For a maximization problem,

maxs∈F (x) c(s) − c(M(x))

maxs∈F (x) c(s)
≤ ǫ.
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Lower and Upper Bounds

• For a minimization problem,

min
s∈F (x)

c(s) ≤ c(M(x)) ≤
mins∈F (x) c(s)

1 − ǫ
.

– So approximation ratio
mins∈F (x) c(s)

c(M(x)) ≥ 1 − ǫ.

• For a maximization problem,

(1 − ǫ) × max
s∈F (x)

c(s) ≤ c(M(x)) ≤ max
s∈F (x)

c(s).

– So approximation ratio c(M(x))
maxs∈F (x) c(s) ≥ 1 − ǫ.

• The above are alternative definitions of ǫ-approximation

algorithms.
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Range Bounds

• ǫ takes values between 0 and 1.

• For maximization problems, an ǫ-approximation

algorithm returns solutions within [ (1 − ǫ) × opt,opt ].

• For minimization problems, an ǫ-approximation

algorithm returns solutions within [opt, opt

1−ǫ
].

• For each NP-complete optimization problem, we shall be

interested in determining the smallest ǫ for which there

is a polynomial-time ǫ-approximation algorithm.

• Sometimes ǫ has no minimum value.
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Approximation Thresholds

• The approximation threshold is the greatest lower

bound of all ǫ ≥ 0 such that there is a polynomial-time

ǫ-approximation algorithm.

• The approximation threshold of an optimization problem

can be anywhere between 0 (approximation to any

desired degree) and 1 (no approximation is possible).

• If P = NP, then all optimization problems in NP have

an approximation threshold of 0.

• So we assume P 6= NP for the rest of the discussion.
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node cover

• node cover seeks the smallest C ⊆ V in graph

G = (V, E) such that for each edge in E, at least one of

its endpoints is in C.

• A heuristic to obtain a good node cover is to iteratively

move a node with the highest degree to the cover.

• This turns out to produce

c(M(x))

opt(x)
= Θ(log n).

• Hence the approximation ratio is Θ(log−1 n).

• It is not an ǫ-approximation algorithm for any ǫ < 1.
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A 0.5-Approximation Algorithma

1: C := ∅;

2: while E 6= ∅ do

3: Delete an arbitrary edge {u, v } from E;

4: Delete edges incident with u and v from E;

5: Add u and v to C; {Add 2 nodes to C each time.}

6: end while

7: return C;

aJohnson (1974).
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Analysis

• C contains |C|/2 edges.

• No two edges of C share a node.

• Any node cover must contain at least one node from

each of these edges.

• This means that opt(G) ≥ |C|/2.

• So
opt(G)

|C|
≥ 1/2.

• The approximation threshold is ≤ 0.5.

• We remark that 0.5 is also the lower bound for any

“greedy” algorithms.a

aDavis and Impagliazzo (2004).
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The 0.5 Bound Is Tight for the Algorithma

Optimal cover


aContributed by Mr. Jenq-Chung Li (R92922087) on December 20,

2003.
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