Graph Coloring

k-COLORING asks if the nodes of a graph can be colored
with < k colors such that no two adjacent nodes have

the same color.
2-COLORING is in P (why?).
But 3-COLORING is NP-complete (see next page).

k-COLORING is NP-complete for k > 3 (why?).
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3-COLORING Is NP-Complete?

We will reduce NAESAT to 3-COLORING.

We are given a set of clauses C1,Cs,...,C,, each with 3

literals.
The boolean variables are x1,xa,...,T,.

We shall construct a graph G such that it can be colored
with colors {0, 1,2} if and only if all the clauses can be
NAE-satisfied.

2Karp (1972).
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The Proof (continued)

e Every variable z; is involved in a triangle |a, x;, —x; |

with a common node a.
e Each clause C; = (¢;1 V ¢i2 V ¢;3) is also represented by a
triangle
[Cu,CzQ, Ci3]~
— Node ¢;; with the same label as one in some triangle

| a, zp, —x) | represent distinct nodes.

e There is an edge between c¢;; and the node that

represents the jth literal of (.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 311



Construction for - - -
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The Proof (continued)

Suppose the graph is 3-colorable.

e Assume without loss of generality that node a takes the

color 2.
e A triangle must use up all 3 colors.

e As a result, one of x; and —x; must take the color 0 and
the other 1.
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The Proof (continued)

e Treat 1 as true and 0 as false.?
— We were dealing only with those triangles with the a

node, not the clause triangles.

e The resulting truth assignment is clearly contradiction

free.

e As each clause triangle contains one color 1 and one

color 0, the clauses are NAE-satisfied.

@The opposite also works.
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The Proof (continued)

Suppose the clauses are NAE-satisfiable.
e Color node a with color 2.

e Color the nodes representing literals by their truth

values (color 0 for false and color 1 for true).

— We were dealing only with those triangles with the a

node, not the clause triangles.
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The Proof (concluded)

e For each clause triangle:
— Pick any two literals with opposite truth values.

— Color the corresponding nodes with 0 if the literal is
true and 1 if it is false.

— Color the remaining node with color 2.

e The coloring is legitimate.

— If literal w of a clause triangle has color 2, then its

color will never be an issue.

— If literal w of a clause triangle has color 1, then it

must be connected up to literal w with color O.

— If literal w of a clause triangle has color 0, then it
must be connected up to literal w with color 1.
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TRIPARTITE MATCHING

e We are given three sets B, (G, and H, each containing n

elements.
e Let T'C B x G x H be a ternary relation.

e TRIPARTITE MATCHING asks if there is a set of n triples

in T', none of which has a component in common.

— Each element in B is matched to a different element

in G and different element in H.

Theorem 39 (Karp (1972)) TRIPARTITE MATCHING is

NP-complete.
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Related Problems

We are given a family F' = {51, 55,...,95,} of subsets of
a finite set U and a budget B.

SET COVERING asks if there exists a set of B sets in F

whose union is U.

SET PACKING asks if there are B disjoint sets in F'.

Assume |U| = 3m for some m € N and |S;| = 3 for all 1.

EXACT COVER BY 3-SETS asks if there are m sets in F

that are disjoint and have U as their union.
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SET COVERING SET PACKING
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Related Problems (concluded)

Corollary 40 SET COVERING, SET PACKING, and EXACT
COVER BY 3-SETS are all NP-complete.
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The KNAPSACK Problem

There is a set of n items.

Item ¢ has value v; € ZT and weight w; € Z™T.

We are given K € ZT and W € Z.

KNAPSACK asks if there exists a subset S C {1,2,...,n}
such that ) . qw; <W and ) . qv; > K.

— We want to achieve the maximum satisfaction within
the budget.

€S
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KNAPSACK Is NP-Complete

KNAPSACK € NP: Guess an S and verify the constraints.
We assume v; = w; for all 2 and K = W.

KNAPSACK now asks if a subset of {v1,vs,...,v,} adds
up to exactly K.

— Picture yourself as a radio DJ.

— Or a person trying to control the calories intake.

We shall reduce EXACT COVER BY 3-SETS to KNAPSACK.
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The Proof (continued)

We are given a family F' = {51, 53,...,5,} of size-3
subsets of U = {1,2,...,3m}.

EXACT COVER BY 3-SETS asks if there are m disjoint
sets in F' that cover the set U.
Think of a set as a bit vector in {0, 1}°™.

— 001100010 means the set {3,4,8}, and 110010000
means the set {1,2,5}.

3m

—
Our goal is 11---1.
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The Proof (continued)

e A bit vector can also be considered as a binary numober.

e Set union resembles addition.

— 001100010 + 110010000 = 111110010, which denotes
the set {1,2,3,4,5,8}, as desired.

e Trouble occurs when there is carry.

— 001100010 + 001110000 = 010010010, which denotes
the set {2, 5,8}, not the desired {3, 4,5, 8}.
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The Proof (continued)

e Carry may also lead to a situation where we obtain our

solution 11 :--1 with more than m sets in F'.

— 001100010 + 001110000 + 101100000 + 000001101 =
111111111.

— But this “solution” {1,3,4,5,6,7,8,9} does not

correspond to an exact cover.
— And it uses 4 sets instead of the required 3.2

e To fix this problem, we enlarge the base just enough so

that there are no carries.

e Because there are n vectors in total, we change the base
from 2 to n + 1.

@Thanks to a lively class discussion on November 20, 2002.
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The Proof (continued)

e Set v; to be the (n + 1)-ary number corresponding to the

bit vector encoding .S;.

e Now in base n + 1, if there is a set .S such that

3m

¢ ™ : .
Zvies v, = 11---1, then every bit position must be

contributed by exactly one v; and |S| = m.

e Finally, set

(base n + 1).
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The Proof (continued)

e Suppose F' admits an exact cover, say {S1,52,...,9n}.

e Then picking S = {v1,vs2,..., v} clearly results in

3m
——
v, +vo+--Fv, =11---1.

— It is important to note that the meaning of addition
(+) is independent of the base.?
— It is just regular addition.

— But a S; may give rise to different v;’s under different

bases.

2Contributed by Mr. Kuan-Yu Chen (R92922047) on November 3,
2004.
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The Proof (concluded)

e On the other hand, suppose there exists an .S such that

3m

—
> v,egVi=11---11in base n + 1.

e The no-carry property implies that |S| = m and

{S; : v; € S} is an exact cover.
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An Example

e Let m=3,U=1{1,2,3,4,5,6,7,8,9}, and

{1, 3,4},
{2, 3,4},
{2,5,6},
{6,7,8},
{7,8,9}.

e Note that n = 5, as there are 5 .5;’s.
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An Example (concluded)

e Our reduction produces

: ——
K .1 (base 6) = 2015539,

V1 101100000 = 1734048,
() 011100000 = 334368,
V3 010011000 = 281448,
V4 000001110 = 258,

(] 000000111 = 43.

e Note v; + v3 + v5 = K.
e Indeed, S; U S3U S5 =1{1,2,3,4,5,6,7,8,9}, an exact

cover by 3-sets.
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BIN PACKINGS

e We are given N positive integers a1, as,...,an, an

integer C' (the capacity), and an integer B (the number
of bins).

e BIN PACKING asks if these numbers can be partitioned

into B subsets, each of which has total sum at most C.
e Think of packing bags at the check-out counter.

Theorem 41 BIN PACKING s NP-complete.
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INTEGER PROGRAMMING

e INTEGER PROGRAMMING asks whether a system of linear
inequalities with integer coefficients has an integer

solution.

— LINEAR PROGRAMMING asks whether a system of

linear inequalities with integer coeflicients has a

rational solution.
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INTEGER PROGRAMMING |s NP-Complete?

e SET COVERING can be expressed by the inequalities
Ax > f, Y12 <B,0<z; <1, where

— x; is one if and only if S; is in the cover.

— A is the matrix whose columns are the bit vectors of
the sets 51,59, .. ..

— 71 is the vector of 1s.
e This shows INTEGER PROGRAMMING is NP-hard.

e Many NP-complete problems can be expressed as an
INTEGER PROGRAMMING problem.

2Papadimitriou (1981).
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Easier or Harder??
e Adding restrictions on the allowable problem instances
will not make a problem harder.
— We are now solving a subset of problem instances.

The INDEPENDENT SET proof (p. 277) and the
KNAPSACK proof (p. 322).

SAT to 2SAT (easier by p. 264).

CIRCUIT VALUE to MONOTONE CIRCUIT VALUE
(equally hard by p. 241).

@Thanks to a lively class discussion on October 29, 2003.
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Easier or Harder? (concluded)

e Adding restrictions on the allowable solutions may make

a problem easier, as hard, or harder.

e It is problem dependent.
— MIN CUT to BISECTION WIDTH (harder by p. 303).
LINEAR PROGRAMMING to INTEGER PROGRAMMING
(harder by p. 332).

SAT to NAESAT (equally hard by p. 272) and MAX
CUT to MAX BISECTION (equally hard by p. 301).

3-COLORING to 2-COLORING (easier by p. 309).
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coNP and Function Problems
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coNP

e By definition, coNP is the class of problems whose

complement is in NP.

e NP is the class of problems that have succinct

certificates (recall Proposition 30 on p. 251).

e coNP is therefore the class of problems that have

succinct disqualifications:

— A “no” instance of a problem in coNP possesses a

short proof of its being a “no” instance.

— Only “no” instances have such proofs.
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coNP (continued)

e Suppose L is a coNP problem.
e There exists a polynomial-time nondeterministic
algorithm M such that:

— If x € L, then M (x) = “yes” for all computation
paths.

— If x € L, then M (x) = “no” for some computation
path.
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coNP (concluded)
e Clearly P C coNP.

e [t is not known if
P = NP N coNP.
— Contrast this with

R = RENcoRE

(see Proposition 11 on p. 124).
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Some coNP Problems

VALIDITY € coNP.

— If ¢ is not valid, it can be disqualified very succinctly:

a truth assignment that does not satisfy it.

SAT COMPLEMENT & coNP.

— The disqualification is a truth assignment that
satisfies it.

HAMILTONIAN PATH COMPLEMENT &€ coNP.

— The disqualification is a Hamiltonian path.

OPTIMAL TSP (D) € coNP.?

— The disqualification is a tour with a length < B.

2 Asked by Mr. Che-Wei Chang (R95922093) on September 27, 2006.
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An Alternative Characterization of coNP

Proposition 42 Let L C X* be a language. Then L € coNP
of and only if there is a polynomually decidable and

polynomaially balanced relation R such that

L={x:Vy(z,y) € R}.

(As on p. 250, we assume |y| < |z |¥ for some k.)

e L. ={z:(x,y) € =R for some y}.

e Because —R remains polynomially balanced, L € NP by
Proposition 30 (p. 251).

Hence L € coNP by definition.
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coNP Completeness

Proposition 43 L is NP-complete if and only if its
complement L = ¥* — L is coNP-complete.

Proof (=-; the <= part is symmetric)
e Let L’ be any coNP language.
Hence L’ € NP.
Let R be the reduction from L’ to L.

So xz € L' if and only if R(z) € L.

So z € I/ if and only if R(z) € L.

R is a reduction from L’ to L.
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Some coNP-Complete Problems

e SAT COMPLEMENT is coNP-complete.

— SAT COMPLEMENT is the complement of SAT.

e VALIDITY is coNP-complete.
— ¢ is valid if and only if —¢ is not satisfiable.

— The reduction from SAT COMPLEMENT to VALIDITY

is hence easy.

e HAMILTONIAN PATH COMPLEMENT is coNP-complete.
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Possible Relations between P, NP, coNP

1. P = NP = coNP.
2. NP = coNP but P # NP.
3. NP # coNP and P # NP.

e This is current “consensus.”
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coNP Hardness and NP Hardness?

Proposition 44 If a coNP-hard problem is in NP, then
NP = coNP.

o LLet L € NP be coNP-hard.
o LLet NTM M decide L.

e For any L’ € coNP, there is a reduction R from L’ to L.

e [/ € NP as it is decided by NTM M (R(x)).

— Alternatively, NP is closed under complement.
e Hence coNP C NP.

e The other direction NP C coNP is symmetric.

2Brassard (1979); Selman (1978).
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coNP Hardness and NP Hardness (concluded)

Similarly,

Proposition 45 If an NP-hard problem is in coNP, then
NP = coNP.

Hence NP-complete problems are unlikely to be in coNP and

coNP-complete problems are unlikely to be in NP.
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The Primality Problem

An integer p is prime if p > 1 and all positive numbers

other than 1 and p itself cannot divide it.

PRIMES asks if an integer N is a prime number.

Dividing N by 2,3, ...,V N is not efficient.

— The length of N is only log N, but /N = 20-5leg N,

A polynomial-time algorithm for PRIMES was not found
until 2002 by Agrawal, Kayal, and Saxena)

We will focus on efficient “probabilistic” algorithms for
PRIMES (used in Mathematica, e.g.).
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if n = a® for some a,b > 1 then
return “composite”;
end if
for r=2,3,...,n—1do
if gcd(n,r) > 1 then
return “composite”;
end if

if r is a prime then

Let g be the largest prime factor of » — 1;
if ¢ > 4/rlogn and n(""1/9 £ 1 mod r then

break; {Exit the for-loop.}
end if
end if
: end for{r — 1 has a prime factor ¢ > 4y/rlogn.}
: fora=1,2,...,2y/rlogn do
if (x —a)” # ("™ —a) mod (" — 1) in Z,[x] then
return “composite”;
end if
: end for

: return “prime”; {The only place with “prime” output.}
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DP

e DP = NP N coNP is the class of problems that have

succinct certificates and succinct disqualifications.

— Each “yes” instance has a succinct certificate.

— Each “no” instance has a succinct disqualification.

— No instances have both.
o P C DP.

e We will see that PRIMES € DP.

— In fact, PRIMES € P as mentioned earlier.
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Primitive Roots in Finite Fields

Theorem 46 (Lucas and Lehmer (1927)) * A number
p > 1 is prime if and only if there 1s a number 1 <r <p

(called the primitive root or generator) such that

1. v~ =1 mod p, and

2. r(P=D/4 £ 1 mod p for all prime divisors q of p — 1.

e We will prove the theorem later.

2Francois Edouard Anatole Lucas (1842-1891); Derrick Henry
Lehmer (1905-1991).
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Pratt’'s Theorem
Theorem 47 (Pratt (1975)) PRIMES € NP N coNP.

e PRIMES is in coNP because a succinct disqualification is

a divisor.
Suppose p is a prime.
p’s certificate includes the 7 in Theorem 46 (p. 351).

Use recursive doubling to check if 7! = 1 mod p in

time polynomial in the length of the input, log, p.

We also need all prime divisors of p — 1: q1,¢qs, ..., qx.

Checking r(P=1)/% £ 1 mod p is also easy.
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The Proof (concluded)

Checking ¢1, g2, ..., g are all the divisors of p — 1 is easy.
We still need certificates for the primality of the g;’s.

The complete certificate is recursive and tree-like:

C(p) = (r;q1,C(q1), a2, C(q2), - - -, ., C(qw)).

C'(p) can also be checked in polynomial time.

We next prove that C(p) is succinct.
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The Succinctness of the Certificate

Lemma 48 The length of C(p) is at most quadratic at

51og; .

e This claim holds when p = 2 or p = 3.

e In general, p — 1 has k£ < log, p prime divisors

41 = 2,92, -, Q-

e ('(p) requires: 2 parentheses and 2k < 2log, p separators
(length at most 2log, p long), r (length at most log, p),
q1 = 2 and its certificate 1 (length at most 5 bits), the
¢;’s (length at most 2log, p), and the C(q;)s.
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The Proof (concluded)

e ('(p) is succinct because

k
[C(p)] < 5logyp+5+5» logg
1=2

2 2
5log, p+5+5 (Z log, qz->

i=2
—1
5log2p—|—5—|—510g2pT

5logy p + 5+ 5(logyp — 1)
5logs p + 10 — 5log, p < 5logs p
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Basic Modular Arithmetics®
Let m,n € Z.
m|n means m divides n and m is n’s divisor.

We call the numbers 0,1,...,n — 1 the residue modulo

n.

The greatest common divisor of m and n is denoted

ged(m,n).

The r in Theorem 46 (p. 351) is a primitive root of p.

We now prove the existence of primitive roots and then
Theorem 46.

@(Carl Friedrich Gauss.
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Euler's® Totient or Phi Function
Let
P(n)={m:1<m < n,ged(m,n) =1}

be the set of all positive integers less than n that are

prime to n (Z is a more popular notation).

— ®(12) = {1,5,7,11}.

Define Euler’s function of n to be ¢(n) = |®(n)|.

¢(p) = p — 1 for prime p, and ¢(1) = 1 by convention.

Euler’s function is not expected to be easy to compute

without knowing n’s factorization.

2Leonhard Euler (1707-1783).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 357



lerphi.nb

500
100 -
300" R
2007 . . : . oo, . e ,..' .'0 :’.'::”~.’.':o
: ’.0' 0': o o' ¢ ¢ - ~'.’ »®e ° ¢ o.
: ”'."’ . e ® . ‘..“.Q.:Of.Q.Q' o
100 "’.:..' 0.... :Oo:....‘..::'..:. 0":0 e’ .
[ 0;:.‘.. ..".o . .. 0'000'.0 ®e
“"o"'o"c e%e°e
’ n

200 300 400 500

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 358



Two Properties of Euler's Function

The inclusion-exclusion principle® can be used to prove the

following.
Lemma 49 ¢(n) =n][,, (1 - %)

o If n=pi'ps?---p;t is the prime factorization of n, then

qb(n)—nili[l(lzi>.

Corollary 50 ¢(mn) = ¢(m) ¢(n) if gcd(m,n) = 1.

aSee my Discrete Mathematics lecture notes.
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A Key Lemma

Lemma 51 . ¢(m)=n.

o Let Hle pf be the prime factorization of n and consider

14

[lo(0) + o) + -+ d(0f) 1. (4)

1=1

e Equation (4) equals n because ¢(pF) = pF — pf_l by

Lemma 49.

: ¢ k;
e Fxpand Eq. (4) to yield Zk’lgkl,...,kggkg [1i—i o)
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The Proof (concluded)
e By Corollary 50 (p. 359),

14 14
[Towi) =9 (Hp> -

1=1

/

/¢ k. . . .. ¢ ‘
e Each [[._; p;’ is a unique divisor of n = Hizlpfz.

e Equation (4) becomes

> é(m).

m|n
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The Density Attack for PRIMES

All numbers<n

Witnesses to
compositeness

of n

e [t works, but does it work well?
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Factorization and Euler's Function

e The ratio of numbers < n relatively prime to n is
¢(n)/n.

e When n = pg, where p and ¢q are distinct primes,

—p—q+1 1 1
¢(n) _pg—p—q+1 _, 1 1

n pq g P

— The “density attack” to factor n = pq hence takes
Q(y/n) steps on average when p ~ ¢ = O(y/n).

— This running time is exponential: (20-510827),
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The Chinese Remainder Theorem

e Let n =nins---ng, where n; are pairwise relatively

prime.

e For any integers ai,ao,...,ax, the set of simultaneous

equations

a1 mod nq,

as mod ngy,

x aj mod ny,

has a unique solution modulo n for the unknown =.
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Fermat's “Little” Theorem?
Lemma 52 For all0 < a < p, a?~! =1 mod p.

e Consider a®(p) = {am mod p: m € ®(p)}.

o ad(p) =

O(p).
— a®(p) C P(p) as a remainder must be between 0 and

p— 1.
— Suppose am = am’ mod p for m > m’, where
m,m’ € ®(p).
— That means a(m —m’) = 0 mod p, and p divides a or

m — m/, which is impossible.

2Pierre de Fermat (1601-1665).
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The Proof (concluded)
Multiply all the numbers in ®(p) to yield (p — 1)!.

Multiply all the numbers in a®(p) to yield a?~(p — 1)!.

As a®(p) = ®(p), (p— 1) =a? " 1(p—1)! mod p.

Finally, a?~! = 1 mod p because p f(p — 1)!.
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The Fermat-Euler Theorem?

Corollary 53 For all a € ®(n), a®™ =1 mod n.

e The proof is similar to that of Lemma 52 (p. 365).
e Consider a®(n) = {am mod n: m € ®(n)}.

e ad(n) = >(n).
— a®(n) C ®(n) as a remainder must be between 0 and
n — 1 and relatively prime to n.
— Suppose am = am’ mod n for m’ < m < n, where
m,m’ € ®(n).
— That means a(m —m') = 0 mod n, and n divides a or

m — m', which is impossible.

2Proof by Mr. Wei-Cheng Cheng (R93922108) on November 24, 2004.
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The Proof (concluded)

Multiply all the numbers in ®(n) to yield | [,,cq(,) m-

Multiply all the numbers in a®(n) to yield

a(I)(n) HmECI)(n) m.

As a®(n) = ®(n),

H m = a2 H m | mod n.

med(n) med(n)

Finally, a®(™ = 1 mod n because n } 1Lcam m.
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An Example

o As 12 =22 x 3,

H(12) = 12 x (1—%) (1—%):4

o In fact, ®(12) = {1,5,7,11}.

e For example,
5% = 625 = 1 mod 12.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 369



