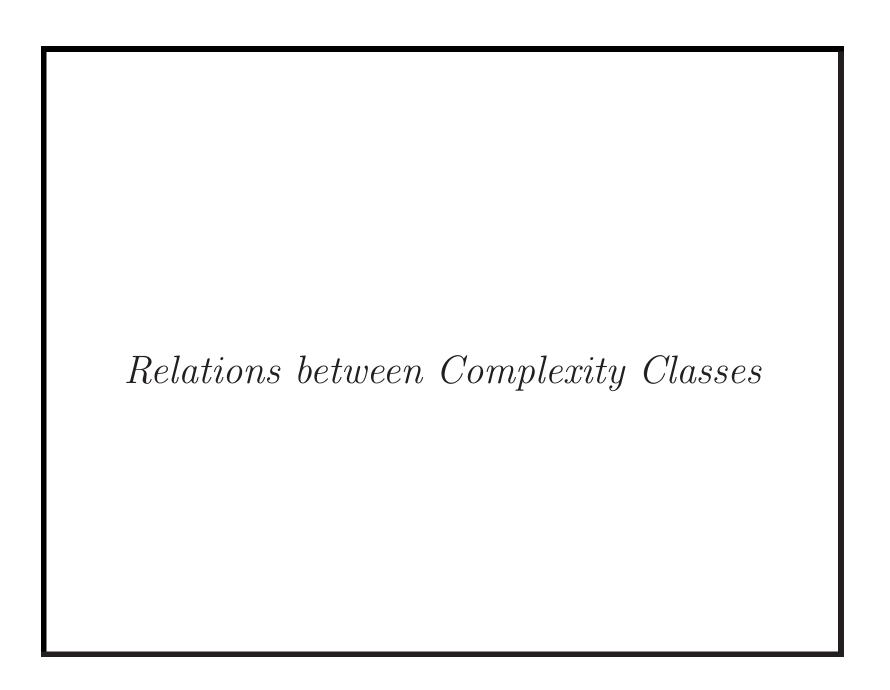
Comments

- The lower bound is rather tight because an upper bound is $n2^n$ (p. 146).
- In the proof, we counted the number of circuits.
- Some circuits may not be valid at all.
- Others may compute the same boolean functions.
- Both are fine because we only need an upper bound.
- We do not need to consider the outdoing edges because they have been counted in the incoming edges.



Proper (Complexity) Functions

- We say that $f : \mathbb{N} \to \mathbb{N}$ is a **proper (complexity)** function if the following hold:
 - -f is nondecreasing.
 - There is a k-string TM M_f such that $M_f(x) = \sqcap^{f(|x|)}$ for any x.^a
 - M_f halts after O(|x| + f(|x|)) steps.
 - $-M_f$ uses O(f(|x|)) space besides its input x.
- M_f 's behavior depends only on |x| not x's contents.
- M_f 's running time is basically bounded by f(n).

^aThis point will become clear in Proposition 15 on p. 162.

Examples of Proper Functions

- Most "reasonable" functions are proper: c, $\lceil \log n \rceil$, polynomials of n, 2^n , \sqrt{n} , n!, etc.
- If f and g are proper, then so are f + g, fg, and 2^g .
- Nonproper functions when serving as the time bounds for complexity classes spoil "the theory building."
 - For example, $TIME(f(n)) = TIME(2^{f(n)})$ for some recursive function f (the **gap theorem**).^a
- Only proper functions f will be used in TIME(f(n)), SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

^aTrakhtenbrot (1964); Borodin (1972).

Space-Bounded Computation and Proper Functions

- In the definition of *space-bounded* computations, the TMs are not required to halt at all.
- When the space is bounded by a proper function f, computations can be assumed to halt:
 - Run the TM associated with f to produce an output of length f(n) first.
 - The space-bound computation must repeat a configuration if it runs for more than $c^{n+f(n)}$ steps for some c (p. 179).
 - So we can count steps to prevent infinite loops.

Precise Turing Machines

- A TM M is **precise** if there are functions f and g such that for every $n \in \mathbb{N}$, for every x of length n, and for every computation path of M,
 - M halts after precise f(n) steps, and
 - All of its strings are of length precisely g(n) at halting.
 - * If M is a TM with input and output, we exclude the first and the last strings.
- M can be deterministic or nondeterministic.

Precise TMs Are General

Proposition 15 Suppose a TM^a M decides L within time (space) f(n), where f is proper. Then there is a precise TM M' which decides L in time O(n + f(n)) (space O(f(n)), respectively).

- M' on input x first simulates the TM M_f associated with the proper function f on x.
- M_f 's output of length f(|x|) will serve as a "yardstick" or an "alarm clock."

^aIt can be deterministic or nondeterministic.

Important Complexity Classes

- We write expressions like n^k to denote the union of all complexity classes, one for each value of k.
- For example,

$$NTIME(n^k) = \bigcup_{j>0} NTIME(n^j).$$

Important Complexity Classes (concluded)

```
P = TIME(n^k),
NP = NTIME(n^k),
PSPACE = SPACE(n^k),
NPSPACE = NSPACE(n^k),
E = TIME(2^{kn}),
EXP = TIME(2^{n^k}),
L = SPACE(\log n),
NL = NSPACE(\log n).
```

Complements of Nondeterministic Classes

- From p. 126, we know R, RE, and coRE are distinct.
 - coRE contains the complements of languages in RE,
 not the languages not in RE.
- Recall that the **complement** of L, denoted by \bar{L} , is the language $\Sigma^* L$.
 - SAT COMPLEMENT is the set of unsatisfiable boolean expressions.
 - HAMILTONIAN PATH COMPLEMENT is the set of graphs without a Hamiltonian path.

The Co-Classes

• For any complexity class C, coC denotes the class

$$\{\bar{L}: L \in \mathcal{C}\}.$$

- Clearly, if C is a deterministic time or space complexity class, then $C = \cos C$.
 - They are said to be **closed under complement**.
 - A deterministic TM deciding L can be converted to one that decides \bar{L} within the same time or space bound by reversing the "yes" and "no" states.
- Whether nondeterministic classes for time are closed under complement is not known (p. 78).

Comments

• Then coC is the class

$$\{\bar{L}: L \in \mathcal{C}\}.$$

- So $L \in \mathcal{C}$ if and only if $\bar{L} \in \text{co}\mathcal{C}$.
- But it is not true that $L \in \mathcal{C}$ if and only if $L \notin \text{co}\mathcal{C}$.
 - $-\cos\mathcal{C}$ is not defined as $\bar{\mathcal{C}}$.
- For example, suppose $C = \{\{2, 4, 6, 8, 10, \ldots\}\}.$
- Then $coC = \{\{1, 3, 5, 7, 9, \ldots\}\}.$
- But $\bar{\mathcal{C}} = 2^{\{1,2,3,\ldots\}^*} \{\{2,4,6,8,10,\ldots\}\}.$

The Quantified Halting Problem

- Let $f(n) \ge n$ be proper.
- Define

$$H_f = \{M; x : M \text{ accepts input } x \}$$
 after at most $f(|x|)$ steps $\}$,

where M is deterministic.

• Assume the input is binary.

$$H_f \in \mathsf{TIME}(f(n)^3)$$

- For each input M; x, we simulate M on x with an alarm clock of length f(|x|).
 - Use the single-string simulator (p. 60), the universal TM (p. 112), and the linear speedup theorem (p. 66).
 - Our simulator accepts M; x if and only if M accepts x before the alarm clock runs out.
- From p. 65, the total running time is $O(\ell_M k_M^2 f(n)^2)$, where ℓ_M is the length to encode each symbol or state of M and k_M is M's number of strings.
- As $\ell_M k_M^2 = O(n)$, the running time is $O(f(n)^3)$, where the constant is independent of M.

$$H_f \not\in \mathsf{TIME}(f(\lfloor n/2 \rfloor))$$

- Suppose TM M_{H_f} decides H_f in time $f(\lfloor n/2 \rfloor)$.
- Consider machine $D_f(M)$:

if
$$M_{H_f}(M; M) =$$
 "yes" then "no" else "yes"

• D_f on input M runs in the same time as M_{H_f} on input M; M, i.e., in time $f(\lfloor \frac{2n+1}{2} \rfloor) = f(n)$, where n = |M|.

^aA student pointed out on October 6, 2004, that this estimation omits the time to write down M; M.

The Proof (concluded)

• First,

$$D_f(D_f) = \text{"yes"}$$

 $\Rightarrow D_f; D_f \notin H_f$

 $\Rightarrow D_f \text{ does not accept } D_f \text{ within time } f(|D_f|)$

 $\Rightarrow D_f(D_f) = \text{"no"}$

a contradiction

• Similarly, $D_f(D_f) = \text{"no"} \Rightarrow D_f(D_f) = \text{"yes."}$

The Time Hierarchy Theorem

Theorem 16 If $f(n) \ge n$ is proper, then

$$TIME(f(n)) \subseteq TIME(f(2n+1)^3).$$

• The quantified halting problem makes it so.

Corollary 17 $P \subseteq EXP$.

- $P \subseteq TIME(2^n)$ because $poly(n) \le 2^n$ for n large enough.
- But by Theorem 16,

$$TIME(2^n) \subsetneq TIME((2^{2n+1})^3) \subseteq TIME(2^{n^2}) \subseteq EXP.$$

The Space Hierarchy Theorem

Theorem 18 (Hennie and Stearns (1966)) If f(n) is proper, then

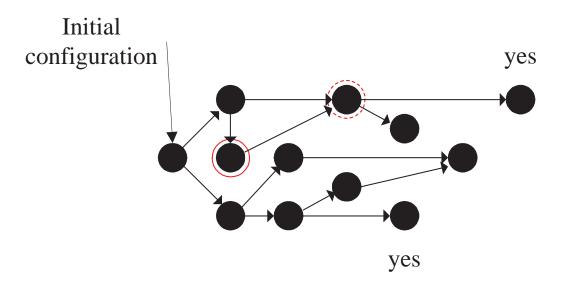
 $SPACE(f(n)) \subseteq SPACE(f(n) \log f(n)).$

Corollary 19 $L \subseteq PSPACE$.

The Reachability Method

- The computation of a time-bounded TM can be represented by directional transitions between configurations.
- The reachability method constructs a directed graph with all the TM configurations as its nodes and edges connecting two nodes if one yields the other.
- The start node representing the initial configuration has zero in degree.
- When the TM is nondeterministic, a node may have an out degree greater than one.

Illustration of the Reachability Method



The reachability method may give the edges on the fly without explicitly storing the whole configuration graph.

Relations between Complexity Classes

Theorem 20 Suppose f(n) is proper. Then

- 1. $SPACE(f(n)) \subseteq NSPACE(f(n)),$ $TIME(f(n)) \subseteq NTIME(f(n)).$
- 2. NTIME $(f(n)) \subseteq SPACE(f(n))$.
- 3. $NSPACE(f(n)) \subseteq TIME(k^{\log n + f(n)})$.
- Proof of 2:
 - Explore the computation *tree* of the NTM for "yes."
 - Use the depth-first search as f is proper.

Proof of Theorem 20(2)

- (continued)
 - Specifically, generate a f(n)-bit sequence denoting the nondeterministic choices over f(n) steps.
 - Simulate the NTM based on the choices.
 - Recycle the space and then repeat the above steps until a "yes" is encountered or the tree is exhausted.
 - Each path simulation consumes at most O(f(n)) space because it takes O(f(n)) time.
 - The total space is O(f(n)) as space is recycled.

Proof of Theorem 20(3)

• Let k-string NTM

$$M = (K, \Sigma, \Delta, s)$$

with input and output decide $L \in NSPACE(f(n))$.

- Use the reachability method on the configuration graph of M on input x of length n.
- A configuration is a (2k+1)-tuple

$$(q, w_1, u_1, w_2, u_2, \dots, w_k, u_k).$$

Proof of Theorem 20(3) (continued)

• We only care about

$$(q, i, w_2, u_2, \dots, w_{k-1}, u_{k-1}),$$

where i is an integer between 0 and n for the position of the first cursor.

• The number of configurations is therefore at most

$$|K| \times (n+1) \times |\Sigma|^{(2k-4)f(n)} = O(c_1^{\log n + f(n)})$$
 (2)

for some c_1 , which depends on M.

• Add edges to the configuration graph based on M's transition function.

Proof of Theorem 20(3) (concluded)

- $x \in L \Leftrightarrow$ there is a path in the configuration graph from the initial configuration to a configuration of the form ("yes", i, \ldots) [there may be many of them].
- The problem is therefore that of REACHABILITY on a graph with $O(c_1^{\log n + f(n)})$ nodes.
- It is in TIME $(c^{\log n + f(n)})$ for some c because REACHABILITY is in TIME (n^k) for some k and

$$\left[c_1^{\log n + f(n)}\right]^k = (c_1^k)^{\log n + f(n)}.$$

The Grand Chain of Inclusions

 $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP$.

- By Corollary 19 (p. 173), we know $L \subseteq PSPACE$.
- The chain must break somewhere between L and PSPACE.
- It is suspected that all four inclusions are proper.
- But there are no proofs yet.^a

^aCarl Friedrich Gauss (1777–1855), "I could easily lay down a multitude of such propositions, which one could neither prove nor dispose of."

Nondeterministic Space and Deterministic Space

• By Theorem 5 (p. 88),

$$NTIME(f(n)) \subseteq TIME(c^{f(n)}),$$

an exponential gap.

- There is no proof that the exponential gap is inherent, however.
- How about NSPACE vs. SPACE?
- Surprisingly, the relation is only quadratic, a polynomial, by Savitch's theorem.

Savitch's Theorem

Theorem 21 (Savitch (1970))

REACHABILITY $\in SPACE(\log^2 n)$.

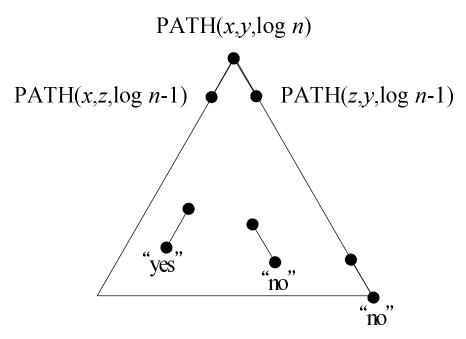
- Let G be a graph with n nodes.
- For $i \geq 0$, let

mean there is a path from node x to node y of length at most 2^i .

• There is a path from x to y if and only if $PATH(x, y, \lceil \log n \rceil)$ holds.

The Proof (continued)

- For i > 0, PATH(x, y, i) if and only if there exists a z such that PATH(x, z, i 1) and PATH(z, y, i 1).
- For PATH(x, y, 0), check the input graph or if x = y.
- Compute PATH $(x, y, \lceil \log n \rceil)$ with a depth-first search on a graph with nodes (x, y, i)s (see next page).
- Like stacks in recursive calls, we keep only the current path of (x, y, i)s.
- The space requirement is proportional to the depth of the tree, $\lceil \log n \rceil$.



- Depth is $\lceil \log n \rceil$, and each node (x, y, i) needs space $O(\log n)$.
- The total space is $O(\log^2 n)$.

```
The Proof (concluded): Algorithm for PATH(x, y, i)
1: if i = 0 then
     if x = y or (x, y) \in G then
       return true;
     else
       return false;
     end if
7: else
     for z = 1, 2, ..., n do
       if PATH(x, z, i - 1) and PATH(z, y, i - 1) then
9:
          return true;
10:
       end if
11:
     end for
12:
     return false;
13:
14: end if
```

The Relation between Nondeterministic Space and Deterministic Space Only Quadratic

Corollary 22 Let $f(n) \ge \log n$ be proper. Then $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}(f^2(n)).$

- Apply Savitch's theorem to the configuration graph of the NTM on the input.
- From p. 179, the configuration graph has $O(c^{f(n)})$ nodes; hence each node takes space O(f(n)).
- But if we supply the whole graph before applying Savitch's theorem, we get $O(c^{f(n)})$ space!

The Proof (continued)

- The way out is *not* to generate the graph at all.
- Instead, keep the graph implicit.
- We check for connectedness only when i = 0, by examining the input string.
- There, given configurations x and y, we go over the Turing machine's program to determine if there is an instruction that can turn x into y in one step.^a

^aThanks to a lively class discussion on October 15, 2003.

The Proof (concluded)

- The z variable in the algorithm simply runs through all possible valid configurations.
- Each z has length O(f(n)) by Eq. (2) on p. 179.
- An alternative is to let $z = 0, 1, ..., O(c^{f(n)})$ and makes sure it is a valid configuration before using it in the recursive calls.^a

^aThanks to a lively class discussion on October 13, 2004.

Implications of Savitch's Theorem

- PSPACE = NPSPACE.
- Nondeterminism is less powerful with respect to space.
- It may be very powerful with respect to time as it is not known if P = NP.

Nondeterministic Space Is Closed under Complement

- Closure under complement is trivially true for deterministic complexity classes (p. 166).
- It is known that^a

$$coNSPACE(f(n)) = NSPACE(f(n)).$$
 (3)

• So

$$coNL = NL,$$
 $coNPSPACE = NPSPACE.$

• But there are still no hints of coNP = NP.

^aSzelepscényi (1987) and Immerman (1988).