Cantor's ${ }^{a}$ Theorem

Theorem 7 The set of all subsets of $\mathbb{N}\left(2^{\mathbb{N}}\right)$ is infinite and not countable.

- Suppose it is countable with $f: \mathbb{N} \rightarrow 2^{\mathbb{N}}$ being a bijection.
- Consider the set $B=\{k \in \mathbb{N}: k \notin f(k)\} \subseteq \mathbb{N}$.
- Suppose $B=f(n)$ for some $n \in \mathbb{N}$.

[^0]
The Proof (concluded)

- If $n \in f(n)$, then $n \in B$, but then $n \notin B$ by B 's definition.
- If $n \notin f(n)$, then $n \notin B$, but then $n \in B$ by B 's definition.
- Hence $B \neq f(n)$ for any n.
- f is not a bijection, a contradiction.

Cantor's Diagonalization Argument Illustrated

A Corollary of Cantor's Theorem

Corollary 8 For any set T, finite or infinite,

$$
|T|<\left|2^{T}\right| .
$$

- The inequality holds in the finite A case.
- Assume A is infinite now.
- $|T| \leq\left|2^{T}\right|$: Consider $f(x)=\{x\}$.
- The strict inequality uses the same argument as Cantor's theorem.

A Second Corollary of Cantor's Theorem

Corollary 9 The set of all functions on \mathbb{N} is not countable.

- It suffices to prove it for functions from \mathbb{N} to $\{0,1\}$.
- Every such function $f: \mathbb{N} \rightarrow\{0,1\}$ determines a set

$$
\{n: f(n)=1\} \subseteq \mathbb{N}
$$

and vice versa.

- So the set of functions from \mathbb{N} to $\{0,1\}$ has cardinality $\left|2^{\mathbb{N}}\right|$.
- Corollary 8 (p. 109) then implies the claim.

Existence of Uncomputable Problems

- Every program is a finite sequence of 0 s and 1 s , thus a nonnegative integer.
- Hence every program corresponds to some integer.
- The set of programs is countable.
- A function is a mapping from integers to integers.
- The set of functions is not countable by Corollary 9 (p. 110).
- So there must exist functions for which there are no programs.

Universal Turing Machine ${ }^{\text {a }}$

- A universal Turing machine U interprets the input as the description of a TM M concatenated with the description of an input to that machine, x.
- Both M and x are over the alphabet of U.
- U simulates M on x so that

$$
U(M ; x)=M(x) .
$$

- U is like a modern computer, which executes any valid machine code, or a Java Virtual machine, which executes any valid bytecode.

[^1]
The Halting Problem

- Undecidable problems are problems that have no algorithms or languages that are not recursive.
- We knew undecidable problems exist (p. 111).
- We now define a concrete undecidable problem, the halting problem:

$$
H=\{M ; x: M(x) \neq \nearrow\}
$$

- Does M halt on input x ?

H Is Recursively Enumerable

- Use the universal TM U to simulate M on x.
- When M is about to halt, U enters a "yes" state.
- If $M(x)$ diverges, so does U.
- This TM accepts H.
- Membership of x in any recursively enumerative language accepted by M can be answered by asking

$$
M ; x \in H ?
$$

H Is Not Recursive

- Suppose there is a TM M_{H} that decides H.
- Consider the program $D(M)$ that calls M_{H} :

1: if $M_{H}(M ; M)=$ "yes" then
2: \quad; \{Writing an infinite loop is easy, right?\}
3: else
4: "yes";
5: end if

- Consider $D(D)$:
- $D(D)=\nearrow \Rightarrow M_{H}(D ; D)=" y e s " \Rightarrow D ; D \in H \Rightarrow$ $D(D) \neq \nearrow$, a contradiction.
$-D(D)=" y e s " \Rightarrow M_{H}(D ; D)="$ no" $\Rightarrow D ; D \notin H \Rightarrow$ $D(D)=\nearrow$, a contradiction.

Comments

- Two levels of interpretations of M :
- A sequence of 0s and 1s (data).
- An encoding of instructions (programs).
- There are no paradoxes.
- Concepts should be familiar to computer scientists.
- Supply a C compiler to a C compiler, a Lisp interpreter to a Lisp interpreter, etc.

Self-Loop Paradoxes

Cantor's Paradox (1899): Let T be the set of all sets. ${ }^{\text {a }}$

- Then $2^{T} \subseteq T$ because 2^{T} is a set of sets.
- But we know $\left|2^{T}\right|>|T|$ (p. 109)!
- We got a "contradiction."
- So what gives?
- Are we willing to give up Cantor's theorem?
- If not, what is a set?

[^2]
Self-Loop Paradoxes (continued)

Russell's Paradox (1901): Consider $R=\{A: A \notin A\}$.

- If $R \in R$, then $R \notin R$ by definition.
- If $R \notin R$, then $R \in R$ also by definition.
- In either case, we have a "contradiction."

Eubulides: The Cretan says, "All Cretans are liars."
Liar's Paradox: "This sentence is false."

Self-Loop Paradoxes (concluded)

Sharon Stone in The Specialist (1994): "I'm not a woman you can trust."

Spin City: "I am not gay, but my boyfriend is."
Numbers 12:3, Old Testament: "Moses was the most humble person in all the world [\cdots]" (attributed to Moses).

More Undecidability

- $H^{*}=\{M: M$ halts on all inputs $\}$.
- Given $M ; x$, we construct the following machine: ${ }^{a}$

$$
M_{x}(y): M(x) .
$$

- M_{x} halts on all inputs if and only if M halts on x.
- In other words, $M_{x} \in H^{*}$ if and only if $M ; x \in H$.
- So if the said language were recursive, H would be recursive, a contradiction.
- This technique is called reduction.

[^3]
More Undecidability (concluded)

- $\{M ; x$: there is a y such that $M(x)=y\}$.
- $\{M ; x$: the computation M on input x uses all states of $M\}$.
- $\{M ; x ; y: M(x)=y\}$.

Reductions in Proving Undecidability

- Suppose we are asked to prove L is undecidable.
- Language H is known to be undecidable.
- We try to find a computable transformation (or reduction) R such that ${ }^{\text {a }}$

$$
\forall x(R(x) \in L \text { if and only if } x \in H)
$$

- We can answer " $x \in H$?" for any x by asking $R(x) \in L$?
- This suffices to prove that L is undecidable.

[^4]
Complements of Recursive Languages

Lemma 10 If L is recursive, then so is \bar{L}.

- Let L be decided by M (which is deterministic).
- Swap the "yes" state and the "no" state of M.
- The new machine decides \bar{L}.

Recursive and Recursively Enumerable Languages

Lemma $11 L$ is recursive if and only if both L and \bar{L} are recursively enumerable.

- Suppose both L and \bar{L} are recursively enumerable, accepted by M and \bar{M}, respectively.
- Simulate M and \bar{M} in an interleaved fashion.
- If M accepts, then $x \in L$ and M^{\prime} halts on state "yes."
- If \bar{M} accepts, then $x \notin L$ and M^{\prime} halts on state "no."

A Very Useful Corollary and Its Consequences

Corollary $12 L$ is recursively enumerable but not recursive, then \bar{L} is not recursively enumerable.

- Suppose \bar{L} is recursively enumerable.
- Then both L and \bar{L} are recursively enumerable.
- By Lemma 11 (p. 124), L is recursive, a contradiction.

Corollary $13 \bar{H}$ is not recursively enumerable.

R, RE, and coRE

RE: The set of all recursively enumerable languages.
coRE: The set of all languages whose complements are recursively enumerable (note that coRE is not $\overline{\mathrm{RE}}$).

- coRE $=\{L: \bar{L} \in \operatorname{RE}\}$.
- $\overline{\mathrm{RE}}=\{L: L \notin \mathrm{RE}\}$.
\mathbf{R} : The set of all recursive languages.

R, RE, and coRE (concluded)

- $\mathrm{R}=\mathrm{RE} \cap \operatorname{coRE}$ (p. 124).
- There exist languages in RE but not in R and not in coRE.
- Such as H (p. 114 and p. 115).
- There are languages in coRE but not in RE.
- Such as \bar{H} (p. 125).
- There are languages in neither RE nor coRE.

Boolean Logic

Boolean Logic ${ }^{\text {a }}$

Boolean variables: x_{1}, x_{2}, \ldots.
Literals: $x_{i}, \neg x_{i}$.
Boolean connectives: \vee, \wedge, \neg.
Boolean expressions: Boolean variables, $\neg \phi$ (negation), $\phi_{1} \vee \phi_{2}$ (disjunction), $\phi_{1} \wedge \phi_{2}$ (conjunction).

- $\bigvee_{i=1}^{n} \phi_{i}$ stands for $\phi_{1} \vee \phi_{2} \vee \cdots \vee \phi_{n}$.
- $\bigwedge_{i=1}^{n} \phi_{i}$ stands for $\phi_{1} \wedge \phi_{2} \wedge \cdots \wedge \phi_{n}$.

Implications: $\phi_{1} \Rightarrow \phi_{2}$ is a shorthand for $\neg \phi_{1} \vee \phi_{2}$.
Biconditionals: $\phi_{1} \Leftrightarrow \phi_{2}$ is a shorthand for

$$
\left(\phi_{1} \Rightarrow \phi_{2}\right) \wedge\left(\phi_{2} \Rightarrow \phi_{1}\right) .
$$

a Boole (1815-1864) in 1847 .

Truth Assignments

- A truth assignment T is a mapping from boolean variables to truth values true and false.
- A truth assignment is appropriate to boolean expression ϕ if it defines the truth value for every variable in ϕ.
$-\left\{x_{1}=\right.$ true,$\left.x_{2}=\mathrm{false}\right\}$ is appropriate to $x_{1} \vee x_{2}$.

Satisfaction

- $T \models \phi$ means boolean expression ϕ is true under T; in other words, T satisfies ϕ.
- ϕ_{1} and ϕ_{2} are equivalent, written

$$
\phi_{1} \equiv \phi_{2},
$$

if for any truth assignment T appropriate to both of them, $T \models \phi_{1}$ if and only if $T \models \phi_{2}$.

- Equivalently, for any truth assignment T appropriate to both of them, $T \models\left(\phi_{1} \Leftrightarrow \phi_{2}\right)$.

Truth Tables

- Suppose ϕ has n boolean variables.
- A truth table contains 2^{n} rows, one for each possible truth assignment of the n variables together with the truth value of ϕ under that truth assignment.
- A truth table can be used to prove if two boolean expressions are equivalent.
- Check if they give identical truth values under all 2^{n} truth assignments.

A Truth Table		
p	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

De Morgan's ${ }^{\text {a }}$ Laws

- De Morgan's laws say that

$$
\begin{aligned}
\neg\left(\phi_{1} \wedge \phi_{2}\right) & =\neg \phi_{1} \vee \neg \phi_{2} \\
\neg\left(\phi_{1} \vee \phi_{2}\right) & =\neg \phi_{1} \wedge \neg \phi_{2}
\end{aligned}
$$

- Here is a proof for the first law:

ϕ_{1}	ϕ_{2}	$\neg\left(\phi_{1} \wedge \phi_{2}\right)$	$\neg \phi_{1} \vee \neg \phi_{2}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

[^5]
Conjunctive Normal Forms

- A boolean expression ϕ is in conjunctive normal form (CNF) if

$$
\phi=\bigwedge_{i=1}^{n} C_{i}
$$

where each clause C_{i} is the disjunction of zero or more literals. ${ }^{\text {a }}$

- For example, $\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right)$ is in CNF.
- Convention: An empty CNF is satisfiable, but a CNF containing an empty clause is not.

[^6]
Disjunctive Normal Forms

- A boolean expression ϕ is in disjunctive normal form (DNF) if

$$
\phi=\bigvee_{i=1}^{n} D_{i}
$$

where each implicant D_{i} is the conjunction of one or more literals.

- For example,

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{2} \wedge x_{3}\right)
$$

is a DNF.

Any Expression ϕ Can Be Converted into CNFs and DNFs $\phi=x_{j}$: This is trivially true.
$\phi=\neg \phi_{1}$ and a CNF is sought: Turn ϕ_{1} into a DNF and apply de Morgan's laws to make a CNF for ϕ.
$\phi=\neg \phi_{1}$ and a DNF is sought: Turn ϕ_{1} into a CNF and apply de Morgan's laws to make a DNF for ϕ.
$\phi=\phi_{1} \vee \phi_{2}$ and a DNF is sought: Make ϕ_{1} and ϕ_{2} DNFs.
$\phi=\phi_{1} \vee \phi_{2}$ and a CNF is sought: Let $\phi_{1}=\bigwedge_{i=1}^{n_{1}} A_{i}$ and $\phi_{2}=\bigwedge_{i=1}^{n_{2}} B_{i}$ be CNFs. Set

$$
\phi=\bigwedge_{i=1}^{n_{1}} \bigwedge_{j=1}^{n_{2}}\left(A_{i} \vee B_{j}\right)
$$

Any Expression ϕ Can Be Converted into CNFs and DNFs (concluded)
$\phi=\phi_{1} \wedge \phi_{2}$ and a CNF is sought: Make ϕ_{1} and ϕ_{2} CNFs.
$\phi=\phi_{1} \wedge \phi_{2}$ and a DNF is sought: Let $\phi_{1}=\bigvee_{i=1}^{n_{1}} A_{i}$ and $\phi_{2}=\bigvee_{i=1}^{n_{2}} B_{i}$ be DNFs. Set

$$
\phi=\bigvee_{i=1}^{n_{1}} \bigvee_{j=1}^{n_{2}}\left(A_{i} \wedge B_{j}\right)
$$

An Example: Turn $\neg((a \wedge y) \vee(z \vee w))$ into a DNF

$$
\begin{array}{cl}
& \neg((a \wedge y) \vee(z \vee w)) \\
\neg(\mathrm{CNF} \mathrm{\vee CNF)} & \neg(((a) \wedge(y)) \vee(z \vee w)) \\
\neg(\mathrm{CNF}) & \neg((a \vee z \vee w) \wedge(y \vee z \vee w)) \\
\text { de Morgan } & (\neg(a \vee z \vee w) \vee \neg(y \vee z \vee w)) \\
= & ((\neg a \wedge \neg z \wedge \neg w) \vee(\neg y \wedge \neg z \wedge \neg w)) .
\end{array}
$$

Satisfiability

- A boolean expression ϕ is satisfiable if there is a truth assignment T appropriate to it such that $T \models \phi$.
- ϕ is valid or a tautology, ${ }^{\text {a }}$ written $\models \phi$, if $T \models \phi$ for all T appropriate to ϕ.
- ϕ is unsatisfiable if and only if ϕ is false under all appropriate truth assignments if and only if $\neg \phi$ is valid.

[^7]
SATISFIABILITY (SAT)

- The length of a boolean expression is the length of the string encoding it.
- satisfiability (sat): Given a CNF ϕ, is it satisfiable?
- Solvable in exponential time on a TM by the truth table method.
- Solvable in polynomial time on an NTM, hence in NP (p. 80).
- A most important problem in answering the $\mathrm{P}=\mathrm{NP}$ problem (p. 242).

UNSATISFIABILITY (UNSAT or SAT COMPLEMENT) and VALIDITY

- unsat (SAT COMPLEMENT): Given a boolean expression ϕ, is it unsatisfiable?
- validity: Given a boolean expression ϕ, is it valid?
$-\phi$ is valid if and only if $\neg \phi$ is unsatisfiable.
- So unsat and validity have the same complexity.
- Both are solvable in exponential time on a TM by the truth table method.

Relations among sAT, UNSAT, and VALIDITY

- The negation of an unsatisfiable expression is a valid expression.
- None of the three problems-satisfiability, unsatisfiability, validity - are known to be in P .

Boolean Functions

- An n-ary boolean function is a function

$$
f:\{\text { true }, \text { false }\}^{n} \rightarrow\{\text { true }, \text { false }\} .
$$

- It can be represented by a truth table.
- There are $2^{2^{n}}$ such boolean functions.
- Each of the 2^{n} truth assignments can make f true or false.

Boolean Functions (continued)

- A boolean expression expresses a boolean function.
- Think of its truth value under all truth assignments.
- A boolean function expresses a boolean expression.
- $\bigvee_{T \models \phi, ~ l i t e r a l ~}^{y_{i}}$ is true under $T\left(y_{1} \wedge \cdots \wedge y_{n}\right)$. * $y_{1} \wedge \cdots \wedge y_{n}$ is the minterm over $\left\{x_{1}, \ldots, x_{n}\right\}$ for T.
- The length ${ }^{\text {a }}$ is $\leq n 2^{n} \leq 2^{2 n}$.
- In general, the exponential length in n cannot be avoided (p. 153)!
${ }^{a}$ We count the logical connectives here.

Boolean Functions (concluded)

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$
0	0	1
0	1	1
1	0	0
1	1	1

The corresponding boolean expression:

$$
\left(\neg x_{1} \wedge \neg x_{2}\right) \vee\left(\neg x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge x_{2}\right) .
$$

Boolean Circuits

- A boolean circuit is a graph C whose nodes are the gates.
- There are no cycles in C.
- All nodes have indegree (number of incoming edges) equal to 0,1 , or 2 .
- Each gate has a sort from

$$
\left\{\text { true }, \text { false }, \vee, \wedge, \neg, x_{1}, x_{2}, \ldots\right\} .
$$

Boolean Circuits (concluded)

- Gates of sort from $\left\{\right.$ true, false $\left., x_{1}, x_{2}, \ldots\right\}$ are the inputs of C and have an indegree of zero.
- The output gate(s) has no outgoing edges.
- A boolean circuit computes a boolean function.
- The same boolean function can be computed by infinitely many boolean circuits.

Boolean Circuits and Expressions

- They are equivalent representations.
- One can construct one from the other:

An Example

$$
\left(\left(x_{1} \wedge x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)\right) \vee\left(\neg\left(x_{3} \vee x_{4}\right)\right)
$$

- Circuits are more economical because of the possibility of sharing.

CIRCUIT SAT and CIRCUIT VALUE

CIRCUIT SAT: Given a circuit, is there a truth assignment such that the circuit outputs true?

CIRCUIT VALUE: The same as CIRCUIT SAT except that the circuit has no variable gates.

- CIRCUIT sat \in NP: Guess a truth assignment and then evaluate the circuit.
- circuit value $\in \mathrm{P}$: Evaluate the circuit from the input gates gradually towards the output gate.

Some Boolean Functions Need Exponential Circuits ${ }^{\text {a }}$

Theorem 14 (Shannon (1949)) For any $n \geq 2$, there is an n-ary boolean function f such that no boolean circuits with $2^{n} /(2 n)$ or fewer gates can compute it.

- There are $2^{2^{n}}$ different n-ary boolean functions.
- So it suffices to prove that the number of boolean circuits with $2^{n} /(2 n)$ or fewer gates is less than $2^{2^{n}}$.

[^8]
The Proof (concluded)

- There are at most $\left((n+5) \times m^{2}\right)^{m}$ boolean circuits with m or fewer gates (see next page).
- But $\left((n+5) \times m^{2}\right)^{m}<2^{2^{n}}$ when $m=2^{n} /(2 n)$:

$$
\begin{aligned}
& m \log _{2}\left((n+5) \times m^{2}\right) \\
= & 2^{n}\left(1-\frac{\log _{2} \frac{4 n^{2}}{n+5}}{2 n}\right) \\
< & 2^{n}
\end{aligned}
$$

for $n \geq 2$.

[^0]: ${ }^{\text {a }}$ Georg Cantor (1845-1918). According to Kac and Ulam, "[If] one had to name a single person whose work has had the most decisive influence on the present spirit of mathematics, it would almost surely be Georg Cantor."

[^1]: ${ }^{\text {a }}$ Turing (1936).

[^2]: ${ }^{\text {a Recall this ontological argument for the existence of God by }}$ St Anselm (-1109) in the 11th century: If something is possible but is not part of God, then God is not the greatest possible object of thought, a contradiction.

[^3]: ${ }^{\text {a }}$ Simplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006.

[^4]: ${ }^{\text {a }}$ Contributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.

[^5]: ${ }^{\text {a }}$ Augustus DeMorgan (1806-1871).

[^6]: ${ }^{\text {a }}$ Improved by Mr. Aufbu Huang (R95922070) on October 5, 2006.

[^7]: ${ }^{\text {a }}$ Wittgenstein (1889-1951) in 1922. Wittgenstein is one of the most important philosophers of all time. "God has arrived," the great economist Keynes (1883-1946) said of him on January 18, 1928. "I met him on the 5:15 train."

[^8]: ${ }^{\text {a }}$ Can be strengthened to "almost all boolean functions ..."

