Time Complexity under Nondeterminism

- Nondeterministic machine N decides L in time f(n), where $f: \mathbb{N} \to \mathbb{N}$, if
 - N decides L, and
 - for any $x \in \Sigma^*$, N does not have a computation path longer than f(|x|).
- We charge only the "depth" of the computation tree.

Time Complexity Classes under Nondeterminism

- NTIME(f(n)) is the set of languages decided by NTMs within time f(n).
- $\operatorname{NTIME}(f(n))$ is a complexity class.

NP

• Define

$$NP = \bigcup_{k>0} NTIME(n^k).$$

- Clearly $P \subseteq NP$.
- Think of NP as efficiently *verifiable* problems.
 - Boolean satisfiability (SAT).
 - TSP (D).
- The most important open problem in computer science is whether P = NP.

Simulating Nondeterministic TMs

Theorem 5 Suppose language L is decided by an NTM N in time f(n). Then it is decided by a 3-string deterministic TM M in time $O(c^{f(n)})$, where c > 1 is some constant depending on N.

- On input x, M goes down every computation path of N using *depth-first* search (but M does *not* know f(n)).
 - As N is time-bounded, the depth-first search will not run indefinitely.

The Proof (concluded)

- If some path leads to "yes," then M enters the "yes" state.
- If none of the paths leads to "yes," then M enters the "no" state.

Corollary 6 NTIME $(f(n))) \subseteq \bigcup_{c>1} \text{TIME}(c^{f(n)}).$

NTIME vs. TIME

- Does converting an NTM into a TM require exploring all the computation paths of the NTM as done in Theorem 5 (p. 88)?
- This is the most important question in theory with practical implications.

Nondeterministic Space Complexity Classes

- Let L be a language.
- Then

```
L \in \text{NSPACE}(f(n))
```

if there is an NTM with input and output that decides Land operates within space bound f(n).

- NSPACE(f(n)) is a set of languages.
- As in the linear speedup theorem (Theorem 4 on p. 66), constant coefficients do not matter.

Graph Reachability

- Let G(V, E) be a directed graph (digraph).
- REACHABILITY asks if, given nodes a and b, does G contain a path from a to b?
- Can be easily solved in polynomial time by breadth-first search.
- How about the nondeterministic space complexity?

The First Try in NSPACE
$$(n \log n)$$

1: $x_1 := a$; {Assume $a \neq b$.}
2: for $i = 2, 3, ..., n$ do
3: Guess $x_i \in \{v_1, v_2, ..., v_n\}$; {The *i*th node.}
4: end for
5: for $i = 2, 3, ..., n$ do
6: if $(x_{i-1}, x_i) \notin E$ then
7: "no";
8: end if
9: if $x_i = b$ then
10: "yes";
11: end if
12: end for
13: "no";

In Fact REACHABILITY $\in \mathsf{NSPACE}(\log n)$ 1: x := a;2: for $i = 2, 3, \ldots, n$ do Guess $y \in \{v_1, v_2, \ldots, v_n\}$; {The next node.} 3: if $(x, y) \notin E$ then 4: "no"; 5:end if 6: 7: if y = b then "yes"; 8: end if 9: 10: x := y;11: **end for** 12: "no";

Space Analysis

- Variables i, x, and y each require $O(\log n)$ bits.
- Testing $(x, y) \in E$ is accomplished by consulting the input string with counters of $O(\log n)$ bits long.
- Hence

```
REACHABILITY \in NSPACE(\log n).
```

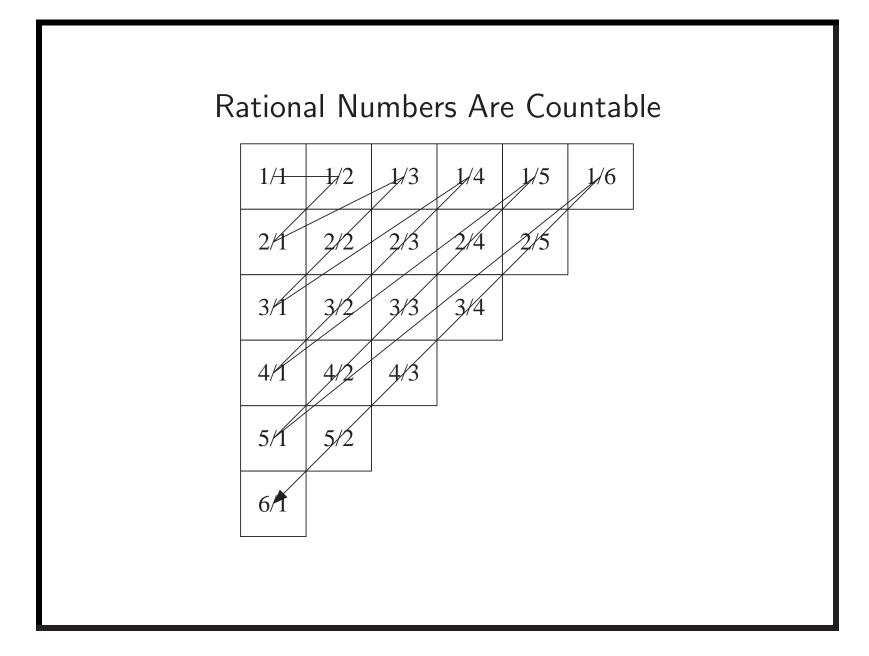
- REACHABILITY with more than one terminal node also has the same complexity.
- Reachability $\in P$ (p. 176).

Undecidability

It seemed unworthy of a grown man to spend his time on such trivialities, but what was I to do? — Bertrand Russell (1872–1970), *Autobiography*, Vol. I

Infinite Sets

- A set is countable if it is finite or if it can be put in one-one correspondence with N, the set of natural numbers.
 - Set of integers \mathbb{Z} .
 - * $0 \leftrightarrow 0, 1 \leftrightarrow 1, 2 \leftrightarrow 3, 3 \leftrightarrow 5, \dots, -1 \leftrightarrow 2, -2 \leftrightarrow 4, -3 \leftrightarrow 6, \dots$
 - Set of positive integers \mathbb{Z}^+ : $i 1 \leftrightarrow i$.
 - Set of odd integers: $(i-1)/2 \leftrightarrow i$.
 - Set of rational numbers: See next page.
 - Set of squared integers: $i \leftrightarrow \sqrt{i}$.



Cardinality

- For any set A, define |A| as A's cardinality (size).
- Two sets are said to have the same cardinality, written as

$$|A| = |B| \quad \text{or} \quad A \sim B,$$

if there exists a one-to-one correspondence between their elements.

• 2^A denotes set A's **power set**, that is $\{B : B \subseteq A\}$.

- If
$$|A| = k$$
, then $|2^A| = 2^k$.

- So
$$|A| < |2^A|$$
 when A is finite.

Cardinality (concluded)

- $|A| \leq |B|$ if there is a one-to-one correspondence between A and one of B's subsets.
- |A| < |B| if $|A| \le |B|$ but $|A| \ne |B|$.
- If $A \subseteq B$, then $|A| \leq |B|$.
- But if $A \subsetneq B$, then |A| < |B|?

Cardinality and Infinite Sets

- If A and B are infinite sets, it is possible that $A \subsetneq B$ yet |A| = |B|.
 - The set of integers *properly* contains the set of odd integers.
 - But the set of integers has the same cardinality as the set of odd integers (p. 98).
- A lot of "paradoxes."

Hilbert's^a Paradox of the Grand Hotel

- For a hotel with a finite number of rooms with all the rooms occupied, a new guest will be turned away.
- Now let us imagine a hotel with an infinite number of rooms, and all the rooms are occupied.
- A new guest comes and asks for a room.
- "But of course!" exclaims the proprietor, and he moves the person previously occupying Room 1 into Room 2, the person from Room 2 into Room 3, and so on
- The new customer occupies Room 1.

^aDavid Hilbert (1862–1943).

Hilbert's Paradox of the Grand Hotel (concluded)

- Let us imagine now a hotel with an infinite number of rooms, all taken up, and an infinite number of new guests who come in and ask for rooms.
- "Certainly, gentlemen," says the proprietor, "just wait a minute."
- He moves the occupant of Room 1 into Room 2, the occupant of Room 2 into Room 4, and so on.
- Now all odd-numbered rooms become free and the infinity of new guests can be accommodated in them.
- "There are many rooms in my Father's house, and I am going to prepare a place for you." (John 14:3)

Galileo's^a Paradox (1638)

- The squares of the positive integers can be placed in one-to-one correspondence with all the positive integers.
- This is contrary to the axiom of Euclid^b that the whole is greater than any of its proper parts.
- Resolution of paradoxes: Pick the notion that results in "better" mathematics.
- The difference between a mathematical paradox and a contradiction is often a matter of opinion.

^aGalileo (1564–1642). ^bEuclid (325 B.C.–265 B.C.).

O2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Cantor's $^{\rm a}$ Theorem

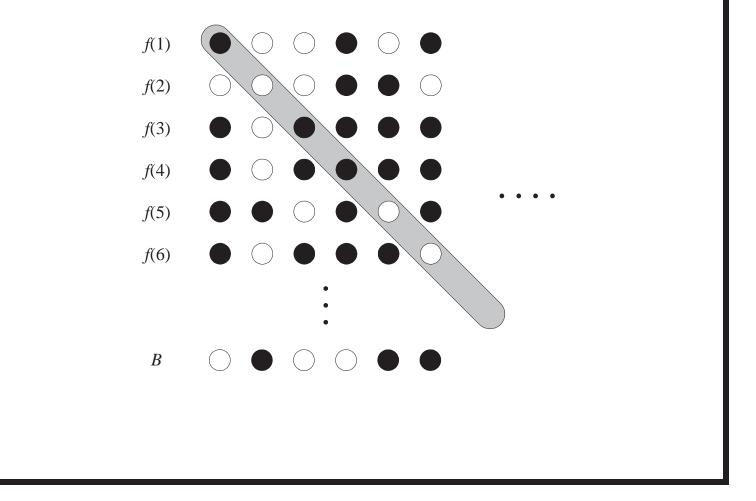
Theorem 7 The set of all subsets of \mathbb{N} $(2^{\mathbb{N}})$ is infinite and not countable.

- Suppose it is countable with $f: \mathbb{N} \to 2^{\mathbb{N}}$ being a bijection.
- Consider the set $B = \{k \in \mathbb{N} : k \notin f(k)\} \subseteq \mathbb{N}$.
- Suppose B = f(n) for some $n \in \mathbb{N}$.

^aGeorg Cantor (1845–1918). According to Kac and Ulam, "[If] one had to name a single person whose work has had the most decisive influence on the present spirit of mathematics, it would almost surely be Georg Cantor."

The Proof (concluded)

- If $n \in f(n)$, then $n \in B$, but then $n \notin B$ by B's definition.
- If $n \notin f(n)$, then $n \notin B$, but then $n \in B$ by B's definition.
- Hence $B \neq f(n)$ for any n.
- f is not a bijection, a contradiction.



A Corollary of Cantor's Theorem Corollary 8 For any set T, finite or infinite,

 $|T| < |2^T|.$

- The inequality holds in the finite A case.
- Assume A is infinite now.
- $|T| \le |2^T|$: Consider $f(x) = \{x\}$.
- The strict inequality uses the same argument as Cantor's theorem.

A Second Corollary of Cantor's Theorem Corollary 9 The set of all functions on N is not countable.

- It suffices to prove it for functions from \mathbb{N} to $\{0, 1\}$.
- Every such function $f : \mathbb{N} \to \{0, 1\}$ determines a set

$$\{n: f(n) = 1\} \subseteq \mathbb{N}$$

and vice versa.

- So the set of functions from \mathbb{N} to $\{0,1\}$ has cardinality $|2^{\mathbb{N}}|$.
- Corollary 8 (p. 109) then implies the claim.

Existence of Uncomputable Problems

- Every program is a finite sequence of 0s and 1s, thus a nonnegative integer.
- Hence every program corresponds to some integer.
- The set of programs is countable.
- A function is a mapping from integers to integers.
- The set of functions is not countable by Corollary 9 (p. 110).
- So there must exist functions for which there are no programs.

Universal Turing Machine $^{\rm a}$

- A universal Turing machine U interprets the input as the *description* of a TM M concatenated with the *description* of an input to that machine, x.
 - Both M and x are over the alphabet of U.
- U simulates M on x so that

$$U(M;x) = M(x).$$

• U is like a modern computer, which executes any valid machine code, or a Java Virtual machine, which executes any valid bytecode.

^aTuring (1936).

The Halting Problem

- Undecidable problems are problems that have no algorithms or languages that are not recursive.
- We knew undecidable problems exist (p. 111).
- We now define a concrete undecidable problem, the **halting problem**:

$$H = \{M; x : M(x) \neq \nearrow\}.$$

- Does M halt on input x?

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

H Is Recursively Enumerable

- Use the universal TM U to simulate M on x.
- When M is about to halt, U enters a "yes" state.
- If M(x) diverges, so does U.
- This TM accepts H.
- Membership of x in any recursively enumerative language accepted by M can be answered by asking

 $M; x \in H?$

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

H Is Not Recursive

- Suppose there is a TM M_H that decides H.
- Consider the program D(M) that calls M_H :
 - 1: if $M_H(M; M) =$ "yes" then
 - 2: \nearrow ; {Writing an infinite loop is easy, right?}
 - 3: **else**
 - 4: "yes";
 - 5: end if
- Consider D(D):
 - $-D(D) = \nearrow M_H(D; D) = \text{"yes"} \Rightarrow D; D \in H \Rightarrow D(D) \neq \nearrow, \text{ a contradiction.}$
 - $D(D) = "yes" \Rightarrow M_H(D; D) = "no" \Rightarrow D; D \notin H \Rightarrow D(D) = \nearrow, a \text{ contradiction.}$

Comments

- Two levels of interpretations of M:
 - A sequence of 0s and 1s (data).
 - An encoding of instructions (programs).
- There are no paradoxes.
 - Concepts should be familiar to computer scientists.
 - Supply a C compiler to a C compiler, a Lisp interpreter to a Lisp interpreter, etc.

Self-Loop Paradoxes

Cantor's Paradox (1899): Let T be the set of all sets.^a

- Then $2^T \subseteq T$ because 2^T is a set of sets.
- But we know $|2^T| > |T|$ (p. 109)!
- We got a "contradiction."
- So what gives?
- Are we willing to give up Cantor's theorem?
- If not, what is a set?

^aRecall this ontological argument for the existence of God by St Anselm (-1109) in the 11th century: If something is possible but is not part of God, then God is not the greatest possible object of thought, a contradiction.

Self-Loop Paradoxes (continued)

Russell's Paradox (1901): Consider $R = \{A : A \notin A\}$.

- If $R \in R$, then $R \notin R$ by definition.
- If $R \notin R$, then $R \in R$ also by definition.
- In either case, we have a "contradiction."

Eubulides: The Cretan says, "All Cretans are liars."

Liar's Paradox: "This sentence is false."

Self-Loop Paradoxes (concluded)

Sharon Stone in *The Specialist* (1994): "I'm not a woman you can trust."

Spin City: "I am not gay, but my boyfriend is."

Numbers 12:3, Old Testament: "Moses was the most humble person in all the world $[\cdots]$ " (attributed to Moses).

More Undecidability

- $H^* = \{M : M \text{ halts on all inputs}\}.$
 - Given M; x, we construct the following machine:

 $M_x(y)$: if y = x then M(x) else halt.

- $-M_x$ halts on all inputs if and only if M halts on x.
- In other words, $M; x \in H$ if and only if $M_x \in H^*$.
- So if the said language were recursive, H would be recursive, a contradiction.
- This technique is called **reduction**.

More Undecidability (concluded)

- $\{M; x : \text{there is a } y \text{ such that } M(x) = y\}.$
- $\{M; x : \text{the computation } M \text{ on input } x \text{ uses all states of } M\}.$
- $\{M; x; y : M(x) = y\}.$

Reductions in Proving Undecidability

- Suppose we are asked to prove L is undecidable.
- Language H is known to be undecidable.
- We try to find a computable transformation (or reduction) R such that^a

 $\forall x (R(x) \in L \text{ if and only if } x \in H).$

- We can answer " $x \in H$?" for any x by asking $R(x) \in L$?
- This suffices to prove that L is undecidable.

^aContributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.

Complements of Recursive Languages

Lemma 10 If L is recursive, then so is \overline{L} .

- Let L be decided by M (which is deterministic).
- Swap the "yes" state and the "no" state of M.
- The new machine decides \overline{L} .

Recursive and Recursively Enumerable Languages Lemma 11 L is recursive if and only if both L and \overline{L} are recursively enumerable.

- Suppose both L and \overline{L} are recursively enumerable, accepted by M and \overline{M} , respectively.
- Simulate M and \overline{M} in an *interleaved* fashion.
- If M accepts, then $x \in L$ and M' halts on state "yes."
- If \overline{M} accepts, then $x \notin L$ and M' halts on state "no."

A Very Useful Corollary and Its Consequences

Corollary 12 L is recursively enumerable but not recursive, then \overline{L} is not recursively enumerable.

- Suppose \overline{L} is recursively enumerable.
- Then both L and \overline{L} are recursively enumerable.
- By Lemma 11 (p. 124), L is recursive, a contradiction.

Corollary 13 \overline{H} is not recursively enumerable.

R, RE, and coRE

RE: The set of all recursively enumerable languages.

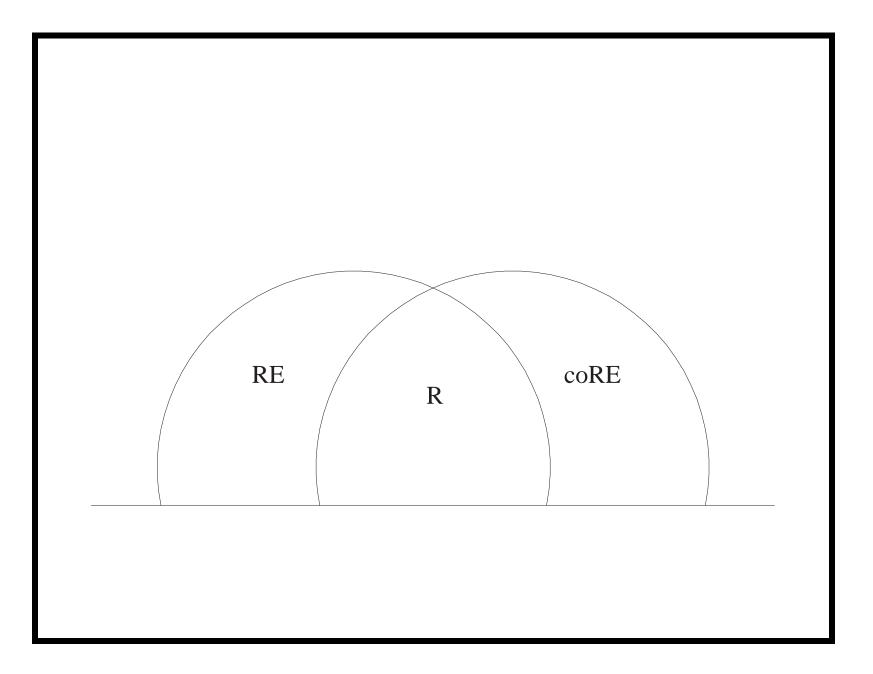
coRE: The set of all languages whose complements are recursively enumerable (note that coRE is not $\overline{\text{RE}}$).

- $\operatorname{coRE} = \{ L : \overline{L} \in \operatorname{RE} \}.$
- $\overline{\operatorname{RE}} = \{ L : L \notin \operatorname{RE} \}.$

R: The set of all recursive languages.

R, RE, and coRE (concluded)

- $R = RE \cap coRE$ (p. 124).
- There exist languages in RE but not in R and not in coRE.
 - Such as H (p. 114 and p. 115).
- There are languages in coRE but not in RE.
 - Such as \overline{H} (p. 125).
- There are languages in neither RE nor coRE.



Boolean Logic

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Boolean Logic $^{\rm a}$

Boolean variables: x_1, x_2, \ldots

Literals: x_i , $\neg x_i$.

Boolean connectives: \lor, \land, \neg .

Boolean expressions: Boolean variables, $\neg \phi$ (negation), $\phi_1 \lor \phi_2$ (disjunction), $\phi_1 \land \phi_2$ (conjunction).

- $\bigvee_{i=1}^{n} \phi_i$ stands for $\phi_1 \lor \phi_2 \lor \cdots \lor \phi_n$.
- $\bigwedge_{i=1}^{n} \phi_i$ stands for $\phi_1 \wedge \phi_2 \wedge \cdots \wedge \phi_n$.

Implications: $\phi_1 \Rightarrow \phi_2$ is a shorthand for $\neg \phi_1 \lor \phi_2$.

Biconditionals: $\phi_1 \Leftrightarrow \phi_2$ is a shorthand for $(\phi_1 \Rightarrow \phi_2) \land (\phi_2 \Rightarrow \phi_1).$

^aBoole (1815-1864) in 1847.

Truth Assignments

- A truth assignment T is a mapping from boolean variables to truth values true and false.
- A truth assignment is **appropriate** to boolean expression ϕ if it defines the truth value for every variable in ϕ .

- $\{x_1 = \texttt{true}, x_2 = \texttt{false}\}$ is appropriate to $x_1 \lor x_2$.

Satisfaction

- $T \models \phi$ means boolean expression ϕ is true under T; in other words, T satisfies ϕ .
- ϕ_1 and ϕ_2 are **equivalent**, written

$$\phi_1 \equiv \phi_2,$$

if for any truth assignment T appropriate to both of them, $T \models \phi_1$ if and only if $T \models \phi_2$.

- Equivalently, for any truth assignment T appropriate to both of them, $T \models (\phi_1 \Leftrightarrow \phi_2)$.

Truth Tables

- Suppose ϕ has n boolean variables.
- A truth table contains 2ⁿ rows, one for each possible truth assignment of the n variables together with the truth value of φ under that truth assignment.
- A truth table can be used to prove if two boolean expressions are equivalent.
 - Check if they give identical truth values under all 2^n truth assignments.

A Truth Table			
ŗ	0	q	$p \wedge q$
C)	0	0
0)	1	0
1	1	0	0
1	1	1	1
		I	