Decidability and Recursive Languages

• Let $L \subseteq (\Sigma - \{ \bigsqcup \})^*$ be a **language**, i.e., a set of strings of symbols with a finite length.

- For example, $\{0, 01, 10, 210, 1010, \ldots\}$.

• Let M be a TM such that for any string x:

- If $x \in L$, then M(x) = "yes."

- If $x \notin L$, then M(x) = "no."

- We say M decides L.
- If L is decided by some TM, then L is **recursive**.
 - Palindromes over $\{0,1\}^*$ are recursive.

Acceptability and Recursively Enumerable Languages

- Let $L \subseteq (\Sigma \{\bigsqcup\})^*$ be a language.
- Let M be a TM such that for any string x:
 - If $x \in L$, then M(x) = "yes."
 - If $x \notin L$, then $M(x) = \nearrow$.
- We say M accepts L.

Acceptability and Recursively Enumerable Languages (concluded)

- If L is accepted by some TM, then L is a **recursively** enumerable language.
 - A recursively enumerable language can be generated by a TM, thus the name.
 - That is, there is an algorithm such that for every $x \in L$, it will be printed out eventually.

Recursive and Recursively Enumerable Languages **Proposition 2** If L is recursive, then it is recursively enumerable.

- We need to design a TM that accepts L.
- Let TM M decide L.
- We next modify M's program to obtain M' that accepts L.
- M' is identical to M except that when M is about to halt with a "no" state, M' goes into an infinite loop.
- M' accepts L.

Turing-Computable Functions

• Let $f: (\Sigma - \{\bigsqcup\})^* \to \Sigma^*$.

- Optimization problems, root finding problems, etc.

- Let M be a TM with alphabet Σ .
- M computes f if for any string x ∈ (Σ − {∐})*, M(x) = f(x).
- We call f a **recursive function**^a if such an M exists.

^aKurt Gödel (1931).

Church's Thesis or the Church-Turing Thesis

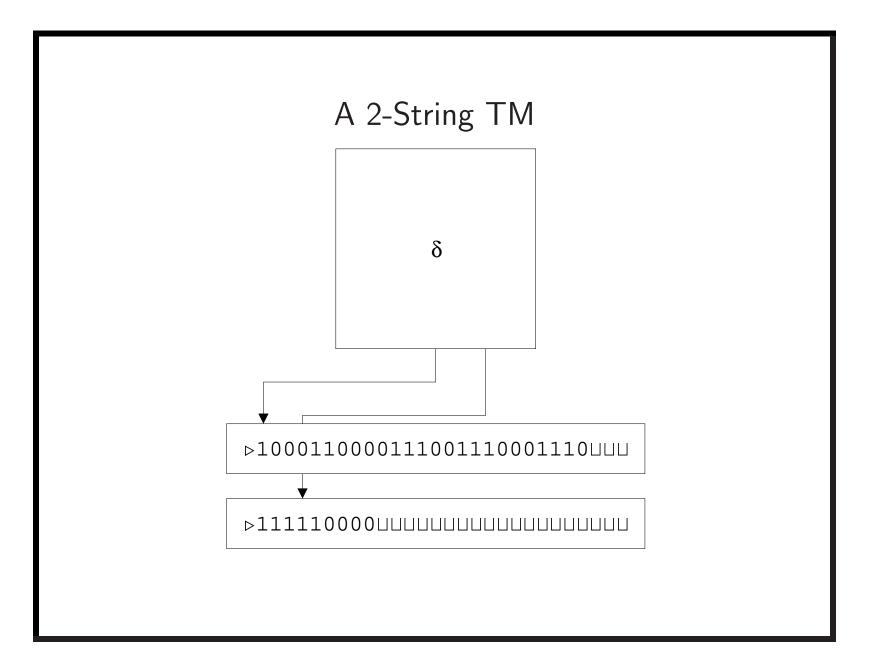
- What is computable is Turing-computable; TMs are algorithms (Kleene 1953).
- Many other computation models have been proposed.
 - Recursive function (Gödel), λ calculus (Church),
 formal language (Post), assembly language-like RAM (Shepherdson & Sturgis), boolean circuits (Shannon),
 extensions of the Turing machine (more strings, two-dimensional strings, and so on), etc.
- All have been proved to be equivalent.
- No "intuitively computable" problems have been shown not to be Turing-computable (yet).

Extended Church's Thesis

- All "reasonably succinct encodings" of problems are *polynomially related*.
 - Representations of a graph as an adjacency matrix and as a linked list are both succinct.
 - The *unary* representation of numbers is not succinct.
 - The *binary* representation of numbers is succinct.
 * 1001 vs. 111111111.
- All numbers for TMs will be binary from now on.

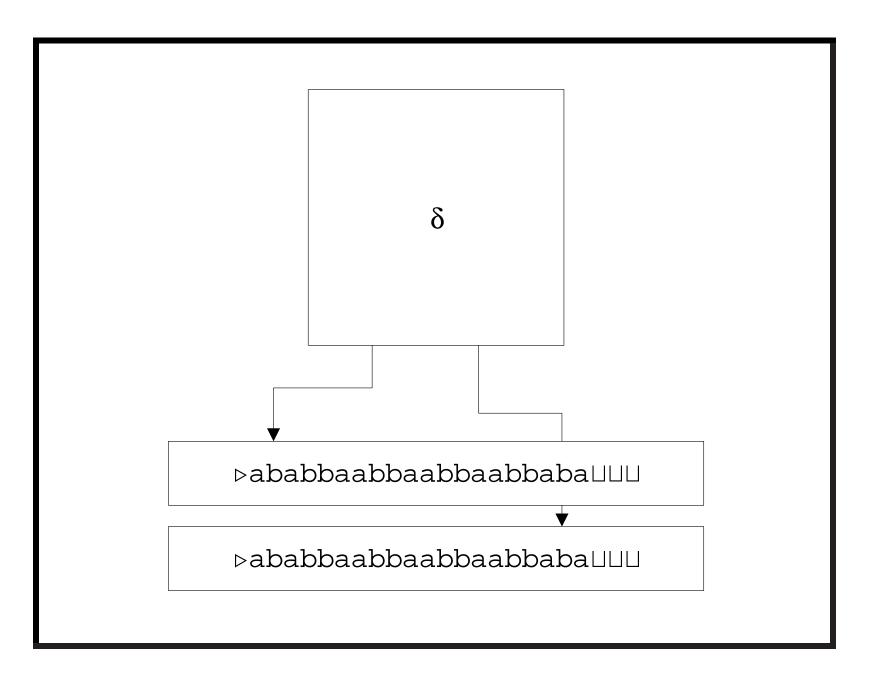
Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s).$
- K, Σ, s are as before.
- $\delta: K \times \Sigma^k \to (K \cup \{h, \text{``yes''}, \text{``no''}\}) \times (\Sigma \times \{\leftarrow, \rightarrow, -\})^k.$
- All strings start with a \triangleright .
- The first string contains the input.
- Decidability and acceptability are the same as before.
- When TMs compute functions, the output is on the last (*kth*) string.



${\tt PALINDROME} \ Revisited$

- A 2-string TM can decide PALINDROME in O(n) steps.
 - It copies the input to the second string.
 - The cursor of the first string is positioned at the first symbol of the input.
 - The cursor of the second string is positioned at the last symbol of the input.
 - The two cursors are then moved in opposite directions until the ends are reached.
 - The machine accepts if and only if the symbols under the two cursors are identical at all steps.



Configurations and Yielding

• The concept of configuration and yielding is the same as before except that a configuration is a (2k + 1)-triple

 $(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k).$

- $-w_iu_i$ is the *i*th string.
- The *i*th cursor is reading the last symbol of w_i .
- Recall that \triangleright is each w_i 's first symbol.
- The k-string TM's initial configuration is

$$(s, \overbrace{\vartriangleright, x, \vartriangleright, \epsilon, \vartriangleright, \epsilon, \ldots, \vartriangleright, \epsilon}^{2k}).$$

Time Complexity

- The multistring TM is the basis of our notion of the time expended by TM computations.
- If for a k-string TM M and input x, the TM halts after t steps, then the **time required by** M **on input** x is t.
- If $M(x) = \nearrow$, then the time required by M on x is ∞ .
- Machine M operates within time f(n) for $f : \mathbb{N} \to \mathbb{N}$ if for any input string x, the time required by M on x is at most f(|x|).
 - |x| is the length of string x.
 - Function f(n) is a **time bound** for M.

Time Complexity Classes^a

- Suppose language $L \subseteq (\Sigma \{\bigsqcup\})^*$ is decided by a multistring TM operating in time f(n).
- We say $L \in \text{TIME}(f(n))$.
- TIME(f(n)) is the set of languages decided by TMs with multiple strings operating within time bound f(n).
- TIME(f(n)) is a complexity class.

- PALINDROME is in TIME(f(n)), where f(n) = O(n).

^aHartmanis and Stearns (1965); Hartmanis, Lewis, and Stearns (1965).

The Simulation Technique

Theorem 3 Given any k-string M operating within time f(n), there exists a (single-string) M' operating within time $O(f(n)^2)$ such that M(x) = M'(x) for any input x.

- The single string of M' implements the k strings of M.
- Represent configuration $(q, w_1, u_1, w_2, u_2, \dots, w_k, u_k)$ of *M* by configuration

 $(q, \triangleright w_1' u_1 \lhd w_2' u_2 \lhd \cdots \lhd w_k' u_k \lhd \lhd)$

of M'.

- $\neg \triangleleft$ is a special delimiter.
- $-w'_i$ is w_i with the first and last symbols "primed."

The Proof (continued)

- The "priming" is to ensure that M' knows which symbol is under the cursor for each simulated string.^a
- The initial configuration of M' is

$$(s, \rhd \rhd' x \lhd \overleftarrow{\rhd' \lhd \cdots \rhd' \lhd} \lhd).$$

^aAdded because of comments made by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

The Proof (continued)

- To simulate each move of M:
 - -M' scans the string to pick up the k symbols under the cursors.
 - * The states of M' must include $K \times \Sigma^k$ to remember them.
 - * The transition functions of M' must also reflect it.
 - -M' then changes the string to reflect the overwriting of symbols and cursor movements of M.

The Proof (continued)

- It is possible that some strings of M need to be lengthened.
 - The linear-time algorithm on p. 30 can be used for each such string.
- The simulation continues until M halts.
- M' erases all strings of M except the last one.
- Since M halts within time f(|x|), none of its strings ever becomes longer than f(|x|).^a
- The length of the string of M' at any time is O(kf(|x|)).

^aWe tacitly assume $f(n) \ge n$.

string 1	string 2	string 3	string 4
----------	----------	----------	----------

string 1	string 2	string 3	string 4
----------	----------	----------	----------

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

The Proof (concluded)

- Simulating each step of M takes, per string of M, O(kf(|x|)) steps.
 - O(f(|x|)) steps to collect information.
 - O(kf(|x|)) steps to write and, if needed, to length en the string.
- M' takes $O(k^2 f(|x|))$ steps to simulate each step of M.
- As there are f(|x|) steps of M to simulate, M' operates within time $O(k^2 f(|x|)^2)$.

Linear Speedup $^{\rm a}$

Theorem 4 Let $L \in TIME(f(n))$. Then for any $\epsilon > 0$, $L \in TIME(f'(n))$, where $f'(n) = \epsilon f(n) + n + 2$.

^aHartmanis and Stearns (1965).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Implications of the Speedup Theorem

- State size can be traded for speed.
 - $m^k \cdot |\Sigma|^{3mk}$ -fold increase to gain a speedup of O(m).
- If f(n) = cn with c > 1, then c can be made arbitrarily close to 1.
- If f(n) is superlinear, say $f(n) = 14n^2 + 31n$, then the constant in the leading term (14 in this example) can be made arbitrarily small.
 - Arbitrary linear speedup can be achieved.
 - This justifies the asymptotic big-O notation.

Ρ

- By the linear speedup theorem, any polynomial time bound can be represented by its leading term n^k for some $k \ge 1$.
- If L is a polynomially decidable language, it is in $TIME(n^k)$ for some $k \in \mathbb{N}$.

- Clearly, $\text{TIME}(n^k) \subseteq \text{TIME}(n^{k+1})$.

• The union of all polynomially decidable languages is denoted by P:

$$\mathbf{P} = \bigcup_{k>0} \mathrm{TIME}(n^k).$$

• Problems in P can be efficiently solved.

Charging for Space

- We do not charge the space used only for input and output.
- Let k > 2 be an integer.
- A *k*-string Turing machine with input and output is a *k*-string TM that satisfies the following conditions.
 - The input string is *read-only*.
 - The last string, the output string, is write-only.
 - So its cursor never moves to the left.
 - The cursor of the input string does not wander off into the \square s.

Space Complexity

- Consider a k-string TM M with input x.
- Assume non- \square is never written over by \square .^a
 - The purpose is not to artificially downplay the space requirement.
- If *M* halts in configuration

 $(H, w_1, u_1, w_2, u_2, \ldots, w_k, u_k)$, then the space required by M on input x is $\sum_{i=1}^k |w_i u_i|$.

 $^{\rm a}{\rm Corrected}$ by Ms. Chuan-Ju Wang (R95922018) on September 27, 2006.

Space Complexity (concluded)

- If M is a TM with input and output, then the space required by M on input x is $\sum_{i=2}^{k-1} |w_i u_i|$.
- Machine M operates within space bound f(n) for f: N → N if for any input x, the space required by M on x is at most f(|x|).

Space Complexity Classes

- Let L be a language.
- Then

$L \in SPACE(f(n))$

if there is a TM with input and output that decides Land operates within space bound f(n).

• SPACE(f(n)) is a set of languages.

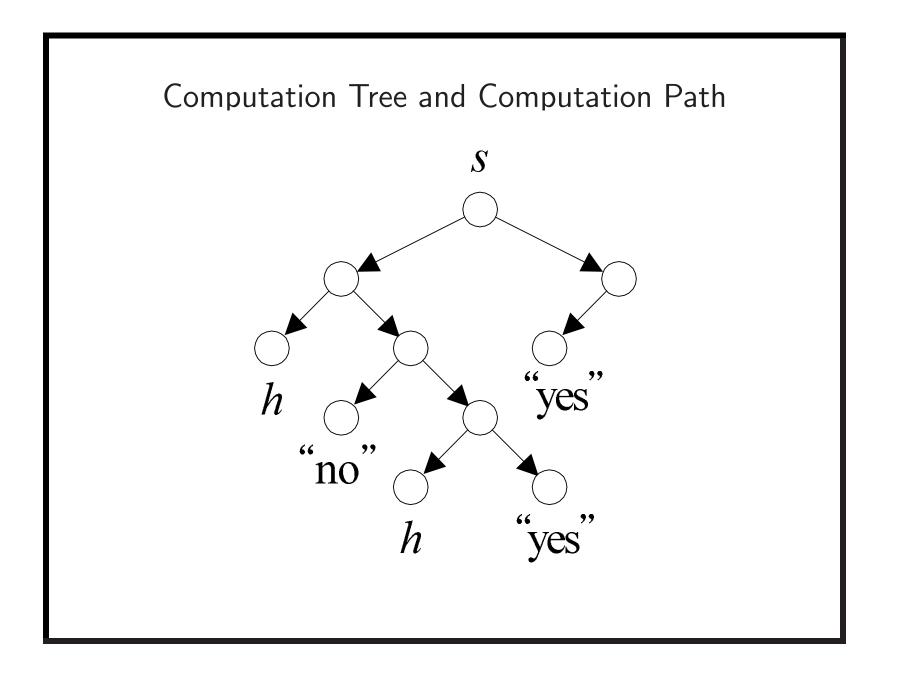
- PALINDROME \in SPACE(log n): Keep 3 counters.

• As in the linear speedup theorem (Theorem 4), constant coefficients do not matter.

$Nondeterminism^{\rm a}$

- A nondeterministic Turing machine (NTM) is a quadruple $N = (K, \Sigma, \Delta, s)$.
- K, Σ, s are as before.
- $\Delta \subseteq K \times \Sigma \to (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}$ is a relation, not a function.
 - For each state-symbol combination, there may be more than one next steps—or none at all.
- A configuration yields another configuration in one step if there *exists* a rule in Δ that makes this happen.

^aRabin and Scott (1959).



Decidability under Nondeterminism

- Let L be a language and N be an NTM.
- N decides L if for any $x \in \Sigma^*$, $x \in L$ if and only if there is a sequence of valid configurations that ends in "yes."
 - It is not required that the NTM halts in all computation paths.
 - If $x \notin L$, no nondeterministic choices should lead to a "yes" state.
- What is key is the algorithm's overall behavior not whether it gives a correct answer for each particular run.
- Determinism is a special case of nondeterminism.

An Example

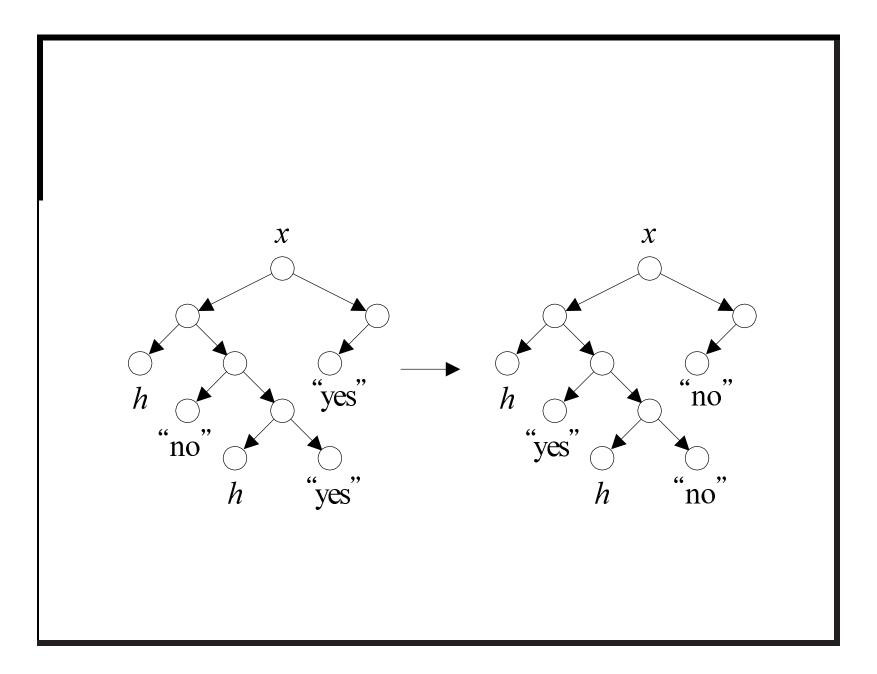
- Let L be the set of logical conclusions of a set of axioms.
 - Predicates not in L may be false under the axioms.
 - They may also be independent of the axioms.
 - * That is, they can be assumed true or false without contradicting the axioms.

An Example (concluded)

- Let ϕ be a predicate whose validity we would like to prove.
- Consider the nondeterministic algorithm:
 - 1: b := true;
 - 2: while the input predicate $\phi \neq b$ do
 - 3: Generate a logical conclusion of *b* by applying some of the axioms; {Nondeterministic choice.}
 - 4: Assign this conclusion to b;
 - 5: end while
 - 6: "yes";
- This algorithm decides L.

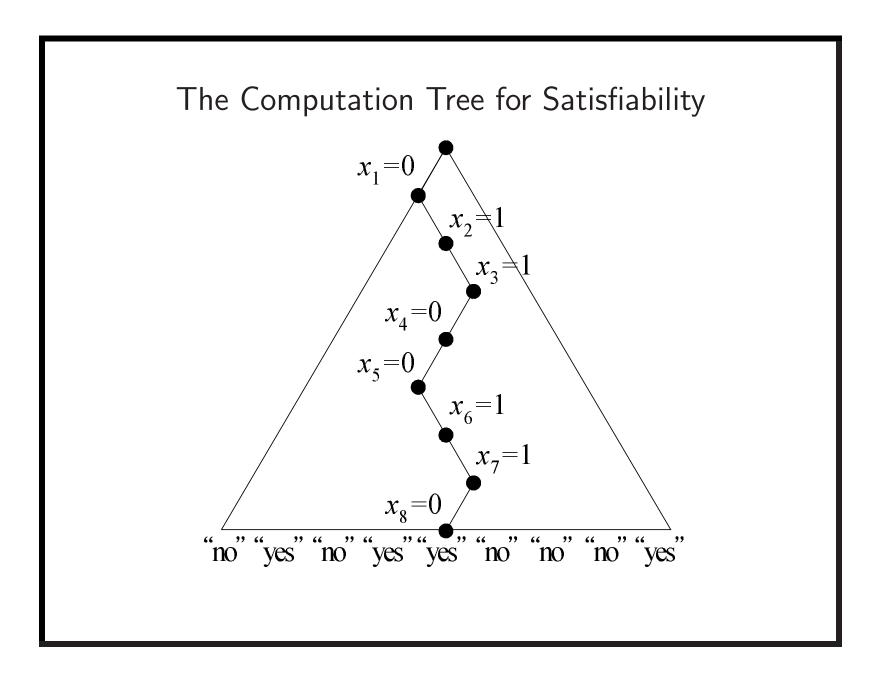
Complementing a TM's Halting States

- Let M decide L, and M' be M after "yes" \leftrightarrow "no".
- If M is a (deterministic) TM, then M' decides \overline{L} .
- But if M is an NTM, then M' may not decide \overline{L} .
 - It is possible that both M and M' accept x (see next page).
 - When this happens, M and M' accept languages that are not complements of each other.



A Nondeterministic Algorithm for Satisfiability

- ϕ is a boolean formula with n variables.
 - 1: for i = 1, 2, ..., n do
 - 2: Guess $x_i \in \{0, 1\}$; {Nondeterministic choice.}
 - 3: end for
 - 4: {Verification:}
 - 5: **if** $\phi(x_1, x_2, \dots, x_n) = 1$ **then**
 - 6: "yes";
 - 7: **else**
 - 8: "no";
 - 9: **end if**



Analysis

- The algorithm decides language $\{\phi : \phi \text{ is satisfiable}\}$.
 - The computation tree is a complete binary tree of depth n.
 - Every computation path corresponds to a particular truth assignment out of 2^n .
 - $-\phi$ is satisfiable if and only if there is a computation path (truth assignment) that results in "yes."
- General paradigm: Guess a "proof" and then verify it.

The Traveling Salesman Problem

- We are given n cities 1, 2, ..., n and integer distances d_{ij} between any two cities i and j.
- Assume $d_{ij} = d_{ji}$ for convenience.
- The **traveling salesman problem** (TSP) asks for the total distance of the shortest tour of the cities.
- The decision version TSP (D) asks if there is a tour with a total distance at most B, where B is an input.
- Both problems are extremely important but equally hard (p. 313 and p. 391).

A Nondeterministic Algorithm for TSP (D)

- 1: for i = 1, 2, ..., n do
- 2: Guess $x_i \in \{1, 2, \dots, n\}$; {The *i*th city.}^a
- 3: end for
- 4: $x_{n+1} := x_1;$
- 5: {Verification stage:}
- 6: if x_1, x_2, \ldots, x_n are distinct and $\sum_{i=1}^n d_{x_i, x_{i+1}} \leq B$ then
- 7: "yes";
- 8: **else**
- 9: "no";
- 10: **end if**

^aCan be made into a series of $\log_2 n$ binary choices for each x_i so that the next-state count (2) is a constant, independent of input size. Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Time Complexity under Nondeterminism

- Nondeterministic machine N decides L in time f(n), where $f: \mathbb{N} \to \mathbb{N}$, if
 - N decides L, and
 - for any $x \in \Sigma^*$, N does not have a computation path longer than f(|x|).
- We charge only the "depth" of the computation tree.

Time Complexity Classes under Nondeterminism

- NTIME(f(n)) is the set of languages decided by NTMs within time f(n).
- $\operatorname{NTIME}(f(n))$ is a complexity class.

NP

• Define

$$NP = \bigcup_{k>0} NTIME(n^k).$$

- Clearly $P \subseteq NP$.
- Think of NP as efficiently *verifiable* problems.
 - Boolean satisfiability (SAT).
 - TSP (D).
- The most important open problem in computer science is whether P = NP.

Simulating Nondeterministic TMs

Theorem 5 Suppose language L is decided by an NTM N in time f(n). Then it is decided by a 3-string deterministic TM M in time $O(c^{f(n)})$, where c > 1 is some constant depending on N.

- On input x, M goes down every computation path of N using *depth-first* search (but M does *not* know f(n)).
 - As M is time-bounded, the depth-first search will not run indefinitely.

The Proof (concluded)

- If some path leads to "yes," then M enters the "yes" state.
- If none of the paths leads to "yes," then M enters the "no" state.

Corollary 6 NTIME $(f(n))) \subseteq \bigcup_{c>1} \text{TIME}(c^{f(n)}).$

NTIME vs. TIME

- Does converting an NTM into a TM require exploring all the computation paths of the NTM as done in Theorem 5 (p. 88)?
- This is the most important question in theory with practical implications.

Nondeterministic Space Complexity Classes

- Let L be a language.
- Then

```
L \in \text{NSPACE}(f(n))
```

if there is an NTM with input and output that decides Land operates within space bound f(n).

- NSPACE(f(n)) is a set of languages.
- As in the linear speedup theorem (Theorem 4 on p. 66), constant coefficients do not matter.

Graph Reachability

- Let G(V, E) be a directed graph (digraph).
- REACHABILITY asks if, given nodes a and b, does G contain a path from a to b?
- Can be easily solved in polynomial time by breadth-first search.
- How about the nondeterministic space complexity?

The First Try in NSPACE
$$(n \log n)$$

1: $x_1 := a$; {Assume $a \neq b$.}
2: for $i = 2, 3, ..., n$ do
3: Guess $x_i \in \{v_1, v_2, ..., v_n\}$; {The *i*th node.}
4: end for
5: for $i = 2, 3, ..., n$ do
6: if $(x_{i-1}, x_i) \notin E$ then
7: "no";
8: end if
9: if $x_i = b$ then
10: "yes";
11: end if
12: end for
13: "no";

In Fact REACHABILITY
$$\in$$
 NSPACE(log n)
1: $x := a$;
2: for $i = 2, 3, ..., n$ do
3: Guess $y \in \{2, 3, ..., n\}$; {The next node.}
4: if $(x, y) \notin E$ then
5: "no";
6: end if
7: if $y = b$ then
8: "yes";
9: end if
10: $x := y$;
11: end for
12: "no";

Space Analysis

- Variables i, x, and y each require $O(\log n)$ bits.
- Testing $(x, y) \in E$ is accomplished by consulting the input string with counters of $O(\log n)$ bits long.
- Hence

```
REACHABILITY \in NSPACE(\log n).
```

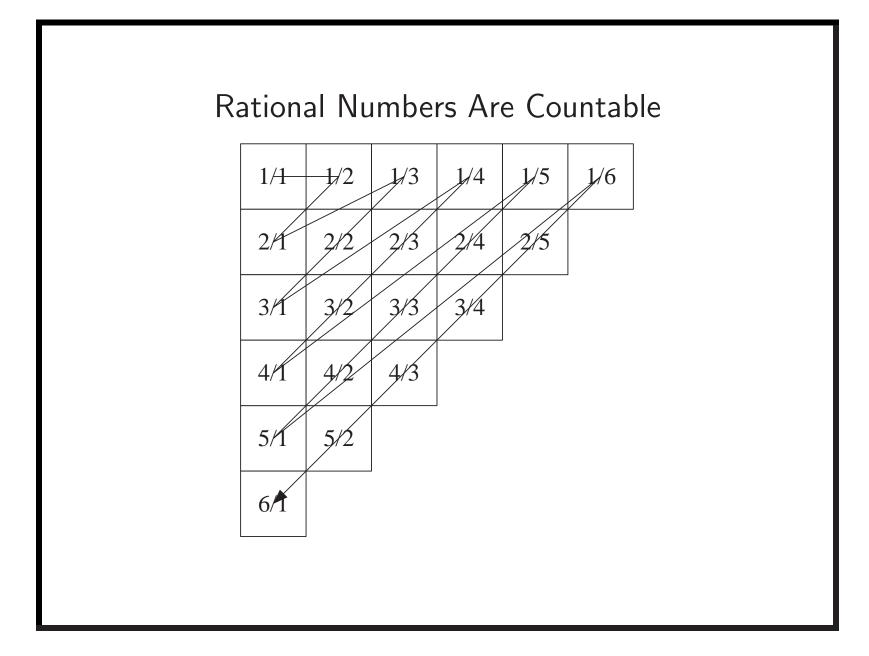
- REACHABILITY with more than one terminal node also has the same complexity.
- Reachability $\in P$ (p. 181).

Undecidability

It seemed unworthy of a grown man to spend his time on such trivialities, but what was I to do? — Bertrand Russell (1872–1970), *Autobiography*, Vol. I

Infinite Sets

- A set is countable if it is finite or if it can be put in one-one correspondence with N, the set of natural numbers.
 - Set of integers \mathbb{Z} .
 - * $0 \leftrightarrow 0, 1 \leftrightarrow 1, 2 \leftrightarrow 3, 3 \leftrightarrow 5, \dots, -1 \leftrightarrow 2, -2 \leftrightarrow 4, -3 \leftrightarrow 6, \dots$
 - Set of positive integers \mathbb{Z}^+ : $i 1 \leftrightarrow i$.
 - Set of odd integers: $(i-1)/2 \leftrightarrow i$.
 - Set of rational numbers: See next page.
 - Set of squared integers: $i \leftrightarrow \sqrt{i}$.



Cardinality

- For any set A, define |A| as A's cardinality (size).
- Two sets are said to have the same cardinality, written as

$$|A| = |B| \quad \text{or} \quad A \sim B,$$

if there exists a one-to-one correspondence between their elements.

• 2^A denotes set A's **power set**, that is $\{B : B \subseteq A\}$.

- If
$$|A| = k$$
, then $|2^A| = 2^k$.

- So
$$|A| < |2^A|$$
 when A is finite.

Cardinality (concluded)

- $|A| \leq |B|$ if there is a one-to-one correspondence between A and one of B's subsets.
- |A| < |B| if $|A| \le |B|$ but $|A| \ne |B|$.
- If $A \subseteq B$, then $|A| \leq |B|$.
- But if $A \subsetneq B$, then |A| < |B|?

Cardinality and Infinite Sets

- If A and B are infinite sets, it is possible that $A \subsetneq B$ yet |A| = |B|.
 - The set of integers *properly* contains the set of odd integers.
 - But the set of integers has the same cardinality as the set of odd integers (p. 98).
- A lot of "paradoxes."

Hilbert's^a Paradox of the Grand Hotel

- For a hotel with a finite number of rooms with all the rooms occupied, a new guest will be turned away.
- Now let us imagine a hotel with an infinite number of rooms, and all the rooms are occupied.
- A new guest comes and asks for a room.
- "But of course!" exclaims the proprietor, and he moves the person previously occupying Room 1 into Room 2, the person from Room 2 into Room 3, and so on
- The new customer occupies Room 1.

^aDavid Hilbert (1862–1943).

Hilbert's Paradox of the Grand Hotel (concluded)

- Let us imagine now a hotel with an infinite number of rooms, all taken up, and an infinite number of new guests who come in and ask for rooms.
- "Certainly, gentlemen," says the proprietor, "just wait a minute."
- He moves the occupant of Room 1 into Room 2, the occupant of Room 2 into Room 4, and so on.
- Now all odd-numbered rooms become free and the infinity of new guests can be accommodated in them.
- "There are many rooms in my Father's house, and I am going to prepare a place for you." (John 14:3)

Galileo's^a Paradox (1638)

- The squares of the positive integers can be placed in one-to-one correspondence with all the positive integers.
- This is contrary to the axiom of Euclid^b that the whole is greater than any of its proper parts.
- Resolution of paradoxes: Pick the notion that results in "better" mathematics.
- The difference between a mathematical paradox and a contradiction is often a matter of opinion.

^aGalileo (1564–1642). ^bEuclid (325 B.C.–265 B.C.).

O2006 Prof. Yuh-Dauh Lyuu, National Taiwan University