MIN CUT and MAX CUT

- A cut in an undirected graph $G=(V, E)$ is a partition of the nodes into two nonempty sets S and $V-S$.
- The size of a cut $(S, V-S)$ is the number of edges between S and $V-S$.
- min CUT $\in P$ by the maxflow algorithm.
- mAX CUT asks if there is a cut of size at least K.
$-K$ is part of the input.

MIN CUT and MAX CUT (concluded)

- mAX CUT has applications in VLSI layout.
- The minimum area of a VLSI layout of a graph is not less than the square of its maximum cut size. ${ }^{\text {a }}$
${ }^{\text {a Raspaud, Sýkora, and Vrťo (1995). }}$

MAX CUT Is NP-Complete ${ }^{a}$

- We will reduce naesat to max cut.
- Given an instance ϕ of 3SAT with m clauses, we shall construct a graph $G=(V, E)$ and a goal K such that:
- There is a cut of size at least K if and only if ϕ is NAE-satisfiable.
- Our graph will have multiple edges between two nodes.
- Each such edge contributes one to the cut if its nodes are separated.
${ }^{\text {a }}$ Garey, Johnson, and Stockmeyer (1976).

The Proof

- Suppose ϕ 's m clauses are $C_{1}, C_{2}, \ldots, C_{m}$.
- The boolean variables are $x_{1}, x_{2}, \ldots, x_{n}$.
- G has $2 n$ nodes: $x_{1}, x_{2}, \ldots, x_{n}, \neg x_{1}, \neg x_{2}, \ldots, \neg x_{n}$.
- Each clause with 3 distinct literals makes a triangle in G.
- For each clause with two identical literals, there are two parallel edges between the two distinct literals.
- No need to consider clauses with one literal (why?).
- For each variable x_{i}, add n_{i} copies of edge $\left[x_{i}, \neg x_{i}\right]$, where n_{i} is the number of occurrences of x_{i} and $\neg x_{i}$ in $\phi .^{\text {a }}$
${ }^{\text {a }}$ Regardless of whether both x_{i} and $\neg x_{i}$ occur in ϕ.

The Proof (continued)

- Changing the side of a literal contributing at most n_{i} to the cut does not decrease the size of the cut.
- Hence we assume variables are separated from their negations.
- The total number of edges in the cut that join opposite literals is $\sum_{i} n_{i}=3 \mathrm{~m}$.
- The total number of literals is 3 m .

The Proof (concluded)

- The remaining $2 m$ edges in the cut must come from the m triangles or parallel edges that correspond to the clauses.
- As each can contribute at most 2 to the cut, all are split.
- A split clause means at least one of its literals is true and at least one false.
- The other direction is left as an exercise.

- $\left(x_{1} \vee x_{2} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)$
- The cut size is $13<5 \times 3=15$.

A Remark

- We had proved that max cut is NP-complete for multigraphs.
- How about proving the same thing for simple graphs? ${ }^{\text {a }}$
- For 4SAT, how do you modify the proof? ${ }^{\text {b }}$
${ }^{\text {a }}$ Contributed by Mr. Tai-Dai Chou (J93922005) on June 2, 2005.
${ }^{\mathrm{b}}$ Contributed by Mr. Chien-Lin Chen (J94922015) on June 8, 2006.

MAX BISECTION

- max cut becomes max bisection if we require that $|S|=|V-S|$.
- It has many applications, especially in VLSI layout.

MAX BISECTION Is NP-Complete

- We shall reduce the more general max cut to max BISECTION.
- Add $|V|$ isolated nodes to G to yield G^{\prime}.
- G^{\prime} has $2 \times|V|$ nodes.
- As the new nodes have no edges, moving them around contributes nothing to the cut.

The Proof (concluded)

- Every cut $(S, V-S)$ of $G=(V, E)$ can be made into a bisection by appropriately allocating the new nodes between S and $V-S$.
- Hence each cut of G can be made a cut of G^{\prime} of the same size, and vice versa.

BISECTION WIDTH

- bisection width is like max bisection except that it asks if there is a bisection of size at most K (sort of MIN BISECTION).
- Unlike MIN CUT, BISECTION WIDTH remains NP-complete.
- A graph $G=(V, E)$, where $|V|=2 n$, has a bisection of size K if and only if the complement of G has a bisection of size $n^{2}-K$.
- So G has a bisection of size $\geq K$ if and only if its complement has a bisection of size $\leq n^{2}-K$.

HAMILTONIAN PATH Is NP-Complete ${ }^{\text {a }}$
Theorem 16 Given an undirected graph, the question whether it has a Hamiltonian path is NP-complete.
${ }^{a}$ Karp (1972).
${ }^{\text {a }}$ Karp (1972).

Corollary 17 TSP (D) is NP-complete.

- Consider a graph G with n nodes.
- Define $d_{i j}=1$ if $[i, j] \in G$ and $d_{i j}=2$ if $[i, j] \notin G$.
- Set the budget $B=n+1$.
- Suppose G has no Hamiltonian paths.
- Then every tour on the new graph must contain at least two edges with weight 2 .
- Otherwise, by removing up to one edge with weight 2, one obtains a Hamiltonian path, a contradiction.

Graph Coloring

- k-coloring asks if the nodes of a graph can be colored with $\leq k$ colors such that no two adjacent nodes have the same color.
- 2-coloring is in P (why?).
- But 3 -coloring is NP-complete (see next page).
- k-Coloring is NP-complete for $k \geq 3$ (why?).

TSP (D) Is NP-Complete (concluded)

- The total cost is then at least $(n-2)+2 \cdot 2=n+2>B$.
- On the other hand, suppose G has Hamiltonian paths.
- Then there is a tour on the new graph containing at most one edge with weight 2 .
- The total cost is then at most $(n-1)+2=n+1=B$.
- We conclude that there is a tour of length B or less if and only if G has a Hamiltonian path.

3-COLORING Is NP-Complete ${ }^{\text {a }}$

- We will reduce naesat to 3 -coloring.
- We are given a set of clauses $C_{1}, C_{2}, \ldots, C_{m}$ each with 3 literals.
- The boolean variables are $x_{1}, x_{2}, \ldots, x_{n}$.
- We shall construct a graph G such that it can be colored with colors $\{0,1,2\}$ if and only if all the clauses can be NAE-satisfied.
${ }^{\mathrm{a}}$ Karp (1972).

The Proof (continued)

- Every variable x_{i} is involved in a triangle [$a, x_{i}, \neg x_{i}$] with a common node a.
- Each clause $C_{i}=\left(c_{i 1} \vee c_{i 2} \vee c_{i 3}\right)$ is also represented by a triangle

$$
\left[c_{i 1}, c_{i 2}, c_{i 3}\right]
$$

- Node $c_{i j}$ with the same label as one in some triangle [$a, x_{k}, \neg x_{k}$] represent distinct nodes.
- There is an edge between $c_{i j}$ and the node that represents the j th literal of C_{i}.

Construction for $\cdots \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge \cdots$

The Proof (continued)
Suppose the graph is 3 -colorable.

- Assume without loss of generality that node a takes the color 2.
- A triangle must use up all 3 colors.
- As a result, one of x_{i} and $\neg x_{i}$ must take the color 0 and the other 1

The Proof (continued)

- Treat 1 as true and 0 as false. ${ }^{\text {a }}$
- We were dealing only with those triangles with the a node, not the clause triangles.
- The resulting truth assignment is clearly contradiction free.
- As each clause triangle contains one color 1 and one color 0 , the clauses are NAE-satisfied.

[^0]
The Proof (continued)

Suppose the clauses are NAE-satisfiable.

- Color node a with color 2 .
- Color the nodes representing literals by their truth values (color 0 for false and color 1 for true).
- We were dealing only with those triangles with the a node, not the clause triangles.

The Proof (concluded)

- For each clause triangle:
- Pick any two literals with opposite truth values.
- Color the corresponding nodes with 0 if the literal is true and 1 if it is false.
- Color the remaining node with color 2.
- The coloring is legitimate.
- If literal w of a clause triangle has color 2 , then its color will never be an issue.
- If literal w of a clause triangle has color 1 , then it must be connected up to literal w with color 0 .
- If literal w of a clause triangle has color 0 , then it must be connected up to literal w with color 1 .

TRIPARTITE MATCHING

- We are given three sets B, G, and H, each containing n elements.
- Let $T \subseteq B \times G \times H$ be a ternary relation.
- TRIPARTITE MATCHING asks if there is a set of n triples in T, none of which has a component in common.
- Each element in B is matched to a different element in G and different element in H.

Theorem 18 (Karp (1972)) TRIPARTITE MATCHING is NP-complete.

Related Problems

- We are given a family $F=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ of subsets of a finite set U and a budget B.
- SEt covering asks if there exists a set of B sets in F whose union is U.
- SEt PaCKing asks if there are B disjoint sets in F.
- Assume $|U|=3 m$ for some $m \in \mathbb{N}$ and $\left|S_{i}\right|=3$ for all i.
- exact cover by 3 -Sets asks if there are m sets in F that are disjoint and have U as their union.

Related Problems (concluded)

Corollary 19 SEt covering, set packing, and Exact COVER By 3 -SETS are all NP-complete.

The knapsack Problem

- There is a set of n items.
- Item i has value $v_{i} \in \mathbb{Z}^{+}$and weight $w_{i} \in \mathbb{Z}^{+}$.
- We are given $K \in \mathbb{Z}^{+}$and $W \in \mathbb{Z}^{+}$.
- knapsack asks if there exists a subset $S \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in S} w_{i} \leq W$ and $\sum_{i \in S} v_{i} \geq K$.
- We want to achieve the maximum satisfaction within the budget.

KNAPSACK Is NP-Complete

- kNAPSACK \in NP: Guess an S and verify the constraints.
- We assume $v_{i}=w_{i}$ for all i and $K=W$.
- KNAPSACK now asks if a subset of $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ adds up to exactly K.
- Picture yourself as a radio DJ.
- Or a person trying to control the calories intake.
- We shall reduce exact cover by 3-SEts to knapsack.

The Proof (continued)

- We are given a family $F=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ of size-3 subsets of $U=\{1,2, \ldots, 3 m\}$.
- EXACT COVER By 3 -SEtS asks if there are m disjoint sets in F that cover the set U.
- Think of a set as a bit vector in $\{0,1\}^{3 m}$.
- 001100010 means the set $\{3,4,8\}$, and 110010000 means the set $\{1,2,5\}$.
- Our goal is $\overbrace{11 \cdots 1}^{3 m}$.

The Proof (continued)

- A bit vector can also be considered as a binary number.
- Set union resembles addition.
$-001100010+110010000=111110010$, which denotes the set $\{1,2,3,4,5,8\}$, as desired.
- Trouble occurs when there is carry.
$-001100010+001110000=010010010$, which denotes the set $\{2,5,8\}$, not the desired $\{3,4,5,8\}$.

The Proof (continued)

- Carry may also lead to a situation where we obtain our solution $11 \cdots 1$ with more than m sets in F.
$-001100010+001110000+101100000+000001101=$ 111111111.
- But this "solution" $\{1,3,4,5,6,7,8,9\}$ does not correspond to an exact cover.
- And it uses 4 sets instead of the required $3 .{ }^{\text {a }}$
- To fix this problem, we enlarge the base just enough so that there are no carries.
- Because there are n vectors in total, we change the base from 2 to $n+1$.
${ }^{\text {a }}$ Thanks to a lively class discussion on November 20, 2002.

The Proof (continued)

- Set v_{i} to be the $(n+1)$-ary number corresponding to the bit vector encoding S_{i}.
- Now in base $n+1$, if there is a set S such that $\sum_{v_{i} \in S} v_{i}=\overbrace{11 \cdots 1}^{3 m}$, then every bit position must be contributed by exactly one v_{i} and $|S|=m$.
- Finally, set

$$
K=\sum_{j=0}^{3 m-1}(n+1)^{j}=\overbrace{11 \cdots 1}^{3 m} \quad(\text { base } n+1) .
$$

The Proof (continued)

- Suppose F admits an exact cover, say $\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$.
- Then picking $S=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ clearly results in

$$
v_{1}+v_{2}+\cdots+v_{m}=\overbrace{11 \cdots 1}^{3 m}
$$

- It is important to note that the meaning of addition $(+)$ is independent of the base. ${ }^{\text {a }}$
- It is just regular addition.
${ }^{\text {a }}$ Contributed by Mr. Kuan-Yu Chen (R92922047) on November 3, 2004.

The Proof (concluded)

- On the other hand, suppose there exists an S such that $\sum_{v_{i} \in S} v_{i}=\overbrace{11 \cdots 1}^{3 m}$ in base $n+1$.
- The no-carry property implies that $|S|=m$ and $\left\{S_{i}: v_{i} \in S\right\}$ is an exact cover.

An Example

- Let $m=3, U=\{1,2,3,4,5,6,7,8,9\}$, and

$$
\begin{aligned}
S_{1} & =\{1,3,4\}, \\
S_{2} & =\{2,3,4\}, \\
S_{3} & =\{2,5,6\}, \\
S_{4} & =\{6,7,8\}, \\
S_{5} & =\{7,8,9\} .
\end{aligned}
$$

- Note that $n=5$, as there are $5 S_{i}$'s.

An Example (concluded)

- Our reduction produces

$$
K=\sum_{j=0}^{3 \times 3-1} 6^{j}=\overbrace{11 \cdots 1}^{3 \times 3} \quad(\text { base } 6),
$$

$v_{1}=101100000$,
$v_{2}=011100000$,
$v_{3}=010011000$,
$v_{4}=000001110$,
$v_{5}=000000111$.

- Note $v_{1}+v_{3}+v_{5}=K$.
- Indeed, $S_{1} \cup S_{3} \cup S_{5}=\{1,2,3,4,5,6,7,8,9\}$, an exact cover by 3 -sets.

BIN PACKINGS

- We are given N positive integers $a_{1}, a_{2}, \ldots, a_{N}$, an integer C (the capacity), and an integer B (the number of bins).
- BIN PACKING asks if these numbers can be partitioned into B subsets, each of which has total sum at most C.
- Think of packing bags at the check-out counter.

Theorem 20 BIN PACKING is NP-complete.

[^0]: ${ }^{\text {a }}$ The opposite also works.

