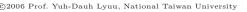
MIN CUT and MAX CUT

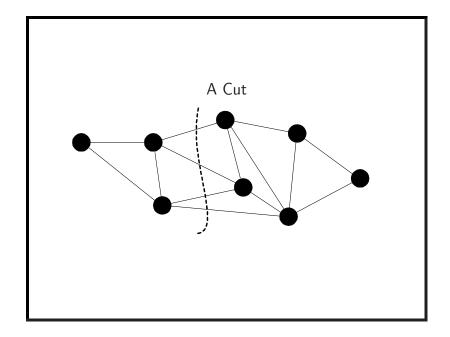
- A cut in an undirected graph G = (V, E) is a partition of the nodes into two nonempty sets S and V S.
- The size of a cut (S, V S) is the number of edges between S and V S.
- MIN CUT \in P by the maxflow algorithm.
- MAX CUT asks if there is a cut of size at least K.
 - -K is part of the input.



Page 169

MIN CUT and MAX CUT (concluded)

- MAX CUT has applications in VLSI layout.
 - The minimum area of a VLSI layout of a graph is not less than the square of its maximum cut size.^a
- ^aRaspaud, Sýkora, and Vrťo (1995).



©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 171

MAX CUT Is NP-Complete^a

- We will reduce NAESAT to MAX CUT.
- Given an instance ϕ of 3SAT with m clauses, we shall construct a graph G = (V, E) and a goal K such that:
 - There is a cut of size at least K if and only if ϕ is NAE-satisfiable.
- Our graph will have multiple edges between two nodes.
 - Each such edge contributes one to the cut if its nodes are separated.

^aGarey, Johnson, and Stockmeyer (1976).

The Proof

- Suppose ϕ 's *m* clauses are C_1, C_2, \ldots, C_m .
- The boolean variables are x_1, x_2, \ldots, x_n .
- G has 2n nodes: $x_1, x_2, \ldots, x_n, \neg x_1, \neg x_2, \ldots, \neg x_n$.
- Each clause with 3 distinct literals makes a triangle in G.
- For each clause with two identical literals, there are two parallel edges between the two distinct literals.
- No need to consider clauses with one literal (why?).
- For each variable x_i , add n_i copies of edge $[x_i, \neg x_i]$, where n_i is the number of occurrences of x_i and $\neg x_i$ in ϕ .^a

^aRegardless of whether both x_i and $\neg x_i$ occur in ϕ .

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

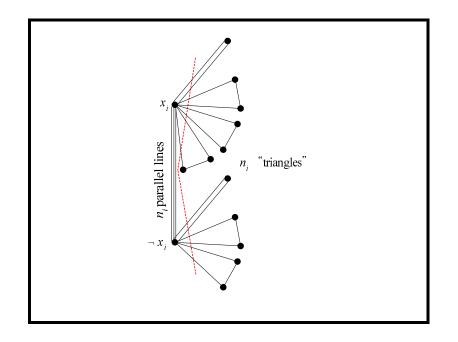
Page 173

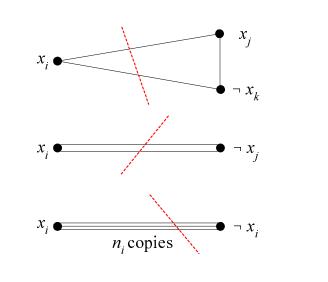
The Proof (continued)

- Set K = 5m.
- Suppose there is a cut (S, V S) of size 5m or more.
- A clause (a triangle or two parallel edges) contributes at most 2 to a cut no matter how you split it.
- Suppose both x_i and $\neg x_i$ are on the same side of the cut.
- Then they together contribute at most $2n_i$ edges to the cut as they appear in at most n_i different clauses.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

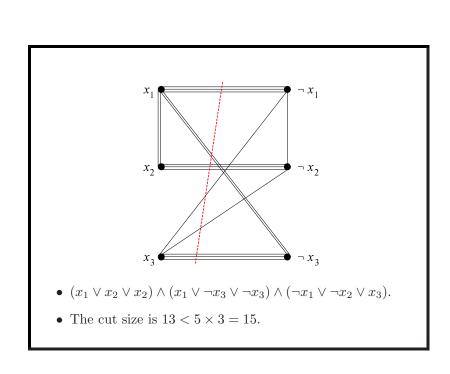
Page 175





- Changing the side of a literal contributing at most n_i to the cut does not decrease the size of the cut.
- Hence we assume variables are separated from their negations.
- The total number of edges in the cut that join opposite literals is $\sum_{i} n_i = 3m$.
 - The total number of literals is 3m.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

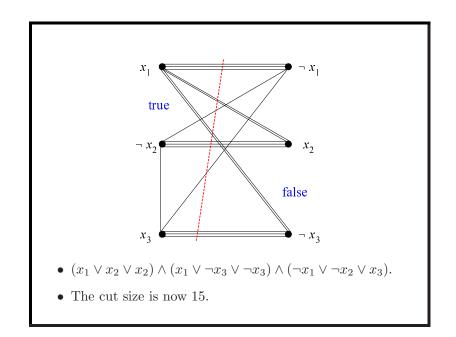


©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 179

The Proof (concluded)

- The *remaining* 2m edges in the cut must come from the m triangles or parallel edges that correspond to the clauses.
- As each can contribute at most 2 to the cut, all are split.
- A split clause means at least one of its literals is true and at least one false.
- The other direction is left as an exercise.



Page 177

A Remark

- We had proved that MAX CUT is NP-complete for multigraphs.
- How about proving the same thing for simple graphs?^a
- For 4SAT, how do you modify the proof?^b
- ^aContributed by Mr. Tai-Dai Chou (J93922005) on June 2, 2005. ^bContributed by Mr. Chien-Lin Chen (J94922015) on June 8, 2006.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 181

MAX BISECTION Is NP-Complete

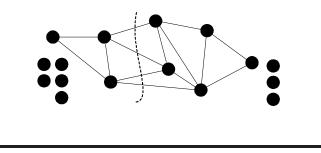
- We shall reduce the more general MAX CUT to MAX BISECTION.
- Add |V| isolated nodes to G to yield G'.
- G' has $2 \times |V|$ nodes.
- As the new nodes have no edges, moving them around contributes nothing to the cut.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 183

The Proof (concluded)

- Every cut (S, V S) of G = (V, E) can be made into a bisection by appropriately allocating the new nodes between S and V S.
- Hence each cut of G can be made a cut of G' of the same size, and vice versa.



MAX BISECTION

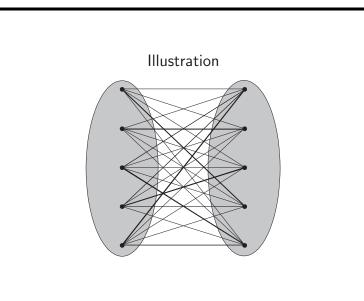
- MAX CUT becomes MAX BISECTION if we require that |S| = |V S|.
- It has many applications, especially in VLSI layout.

BISECTION WIDTH

- BISECTION WIDTH is like MAX BISECTION except that it asks if there is a bisection of size at most K (sort of MIN BISECTION).
- Unlike MIN CUT, BISECTION WIDTH remains NP-complete.
 - A graph G = (V, E), where |V| = 2n, has a bisection of size K if and only if the complement of G has a bisection of size $n^2 - K$.
 - So G has a bisection of size $\geq K$ if and only if its complement has a bisection of size $\leq n^2 - K$.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 185



HAMILTONIAN PATH Is NP-Complete^a

Theorem 16 Given an undirected graph, the question whether it has a Hamiltonian path is NP-complete.

^aKarp (1972).

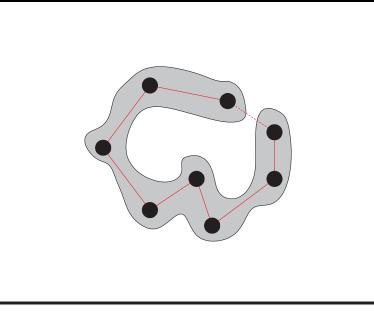
©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 187

TSP (D) Is NP-Complete

Corollary 17 TSP (D) is NP-complete.

- Consider a graph G with n nodes.
- Define $d_{ij} = 1$ if $[i, j] \in G$ and $d_{ij} = 2$ if $[i, j] \notin G$.
- Set the budget B = n + 1.
- Suppose G has no Hamiltonian paths.
- Then every tour on the new graph must contain at least two edges with weight 2.
 - Otherwise, by removing up to one edge with weight
 2, one obtains a Hamiltonian path, a contradiction.



©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 189

TSP (D) Is NP-Complete (concluded)

- The total cost is then at least $(n-2) + 2 \cdot 2 = n+2 > B$.
- On the other hand, suppose ${\cal G}$ has Hamiltonian paths.
- Then there is a tour on the new graph containing at most one edge with weight 2.
- The total cost is then at most (n-1) + 2 = n + 1 = B.
- We conclude that there is a tour of length B or less if and only if G has a Hamiltonian path.

Graph Coloring

- k-COLORING asks if the nodes of a graph can be colored with ≤ k colors such that no two adjacent nodes have the same color.
- 2-COLORING is in P (why?).
- But 3-COLORING is NP-complete (see next page).
- k-coloring is NP-complete for $k \ge 3$ (why?).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 191

$3\text{-}\mathrm{COLORING}$ Is NP-Complete^a

- We will reduce NAESAT to 3-COLORING.
- We are given a set of clauses C_1, C_2, \ldots, C_m each with 3 literals.
- The boolean variables are x_1, x_2, \ldots, x_n .
- We shall construct a graph G such that it can be colored with colors {0,1,2} if and only if all the clauses can be NAE-satisfied.

^aKarp (1972).

- Every variable x_i is involved in a triangle $[a, x_i, \neg x_i]$ with a common node a.
- Each clause $C_i = (c_{i1} \lor c_{i2} \lor c_{i3})$ is also represented by a triangle

$[c_{i1}, c_{i2}, c_{i3}].$

- Node c_{ij} with the same label as one in some triangle $[a, x_k, \neg x_k]$ represent *distinct* nodes.
- There is an edge between c_{ij} and the node that represents the *j*th literal of C_i .

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 193

The Proof (continued)

Suppose the graph is 3-colorable.

- Assume without loss of generality that node *a* takes the color 2.
- A triangle must use up all 3 colors.
- As a result, one of x_i and $\neg x_i$ must take the color 0 and the other 1.

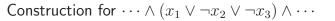
©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

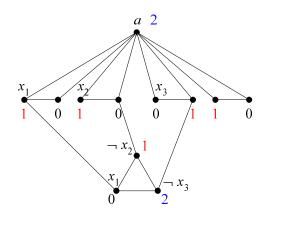
Page 195

The Proof (continued)

- Treat 1 as true and 0 as false.^a
 - We were dealing only with those triangles with the a node, not the clause triangles.
- The resulting truth assignment is clearly contradiction free.
- As each clause triangle contains one color 1 and one color 0, the clauses are NAE-satisfied.

^aThe opposite also works.





Suppose the clauses are NAE-satisfiable.

- Color node a with color 2.
- Color the nodes representing literals by their truth values (color 0 for false and color 1 for true).
 - We were dealing only with those triangles with the a node, not the clause triangles.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 197

The Proof (concluded)

- For each clause triangle:
 - Pick any two literals with opposite truth values.
 - Color the corresponding nodes with 0 if the literal is true and 1 if it is false.
 - Color the remaining node with color 2.
- The coloring is legitimate.
 - If literal w of a clause triangle has color 2, then its color will never be an issue.
 - If literal w of a clause triangle has color 1, then it must be connected up to literal w with color 0.
 - If literal w of a clause triangle has color 0, then it must be connected up to literal w with color 1.

TRIPARTITE MATCHING

- We are given three sets B, G, and H, each containing n elements.
- Let $T \subseteq B \times G \times H$ be a ternary relation.
- TRIPARTITE MATCHING asks if there is a set of n triples in T, none of which has a component in common.
 - Each element in B is matched to a different element in G and different element in H.

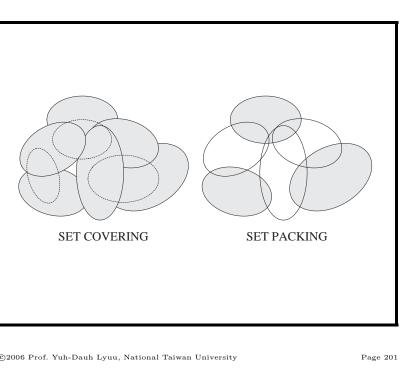
Theorem 18 (Karp (1972)) TRIPARTITE MATCHING is NP-complete.

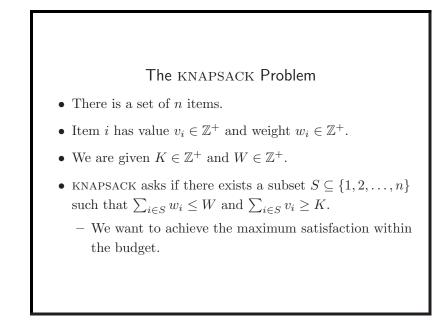
©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 199

Related Problems

- We are given a family $F = \{S_1, S_2, \ldots, S_n\}$ of subsets of a finite set U and a budget B.
- SET COVERING asks if there exists a set of B sets in F whose union is U.
- SET PACKING asks if there are B disjoint sets in F.
- Assume |U| = 3m for some $m \in \mathbb{N}$ and $|S_i| = 3$ for all i.
- EXACT COVER BY 3-SETS asks if there are m sets in F that are disjoint and have U as their union.





©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 203

Related Problems (concluded)

Corollary 19 Set Covering, set packing, and exact cover by 3-sets are all NP-complete.

KNAPSACK Is NP-Complete

- KNAPSACK \in NP: Guess an S and verify the constraints.
- We assume $v_i = w_i$ for all i and K = W.
- KNAPSACK now asks if a subset of $\{v_1, v_2, \ldots, v_n\}$ adds up to exactly K.
 - Picture yourself as a radio DJ.
 - Or a person trying to control the calories intake.
- We shall reduce EXACT COVER BY 3-SETS to KNAPSACK.

- We are given a family $F = \{S_1, S_2, \dots, S_n\}$ of size-3 subsets of $U = \{1, 2, \dots, 3m\}$.
- EXACT COVER BY 3-SETS asks if there are m disjoint sets in F that cover the set U.
- Think of a set as a bit vector in $\{0, 1\}^{3m}$.
 - 001100010 means the set $\{3, 4, 8\}$, and 110010000 means the set $\{1, 2, 5\}$.

• Our goal is $\underbrace{11\cdots 1}^{3m}$

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 205

The Proof (continued)

- Carry may also lead to a situation where we obtain our solution $11 \cdots 1$ with more than *m* sets in *F*.
 - $\begin{array}{l} \ 001100010 + 001110000 + 101100000 + 000001101 = \\ 1111111111. \end{array}$
 - But this "solution" $\{1,3,4,5,6,7,8,9\}$ does not correspond to an exact cover.
 - And it uses 4 sets instead of the required 3.^a
- To fix this problem, we enlarge the base just enough so that there are no carries.
- Because there are n vectors in total, we change the base from 2 to n + 1.

^aThanks to a lively class discussion on November 20, 2002.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 207

The Proof (continued)

- A bit vector can also be considered as a binary *number*.
- Set union resembles addition.
 - 001100010 + 110010000 = 111110010, which denotes the set $\{1, 2, 3, 4, 5, 8\}$, as desired.
- Trouble occurs when there is *carry*.
 - 001100010 + 001110000 = 010010010, which denotes the set $\{2, 5, 8\}$, not the desired $\{3, 4, 5, 8\}$.

The Proof (continued)

- Set v_i to be the (n + 1)-ary number corresponding to the bit vector encoding S_i .
- Now in base n + 1, if there is a set S such that $\sum_{v_i \in S} v_i = \overbrace{11 \cdots 1}^{3m}$, then every bit position must be contributed by exactly one v_i and |S| = m.
- Finally, set

$$K = \sum_{j=0}^{3m-1} (n+1)^j = \overbrace{11\cdots 1}^{3m} \quad \text{(base } n+1\text{)}.$$

- Suppose F admits an exact cover, say $\{S_1, S_2, \ldots, S_m\}$.
- Then picking $S = \{v_1, v_2, \dots, v_m\}$ clearly results in

$$v_1 + v_2 + \dots + v_m = \overbrace{11\cdots 1}^{3m}.$$

- It is important to note that the meaning of addition
 (+) is independent of the base.^a
- It is just regular addition.

a
Contributed by Mr. Kuan-Yu Chen ($\tt R92922047)$ on November 3, 2004.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 209

• Let m = 3, $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, and $S_1 = \{1, 3, 4\}$, $S_2 = \{2, 3, 4\}$, $S_3 = \{2, 5, 6\}$, $S_4 = \{6, 7, 8\}$, $S_5 = \{7, 8, 9\}$. • Note that n = 5, as there are 5 S_i 's.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 211

The Proof (concluded)

• On the other hand, suppose there exists an S such that

$$\sum_{v_i \in S} v_i = \overbrace{11 \cdots 1}^{N}$$
 in base $n+1$.

• The no-carry property implies that |S| = m and $\{S_i : v_i \in S\}$ is an exact cover.

An Example (concluded)

• Our reduction produces

$$K = \sum_{j=0}^{3 \times 3-1} 6^j = \overbrace{11 \cdots 1}^{3 \times 3}$$
 (base 6),

$$v_1 = 101100000,$$

- $v_2 = 011100000,$
- $v_3 = 010011000,$
- $v_4 = 000001110,$
- $v_5 = 000000111.$
- Note $v_1 + v_3 + v_5 = K$.
- Indeed, $S_1 \cup S_3 \cup S_5 = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, an exact cover by 3-sets.

BIN PACKINGS

- We are given N positive integers a_1, a_2, \ldots, a_N , an integer C (the capacity), and an integer B (the number of bins).
- BIN PACKING asks if these numbers can be partitioned into B subsets, each of which has total sum at most C.
- Think of packing bags at the check-out counter.

Theorem 20 BIN PACKING is NP-complete.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 213

Finis