
min cut and max cut

• A cut in an undirected graph G = (V, E) is a partition

of the nodes into two nonempty sets S and V − S.

• The size of a cut (S, V − S) is the number of edges

between S and V − S.

• min cut ∈ P by the maxflow algorithm.

• max cut asks if there is a cut of size at least K.

– K is part of the input.
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min cut and max cut (concluded)

• max cut has applications in VLSI layout.

– The minimum area of a VLSI layout of a graph is not

less than the square of its maximum cut size.a

aRaspaud, Sýkora, and Vrťo (1995).
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A Cut
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max cut Is NP-Completea

• We will reduce naesat to max cut.

• Given an instance φ of 3sat with m clauses, we shall

construct a graph G = (V, E) and a goal K such that:

– There is a cut of size at least K if and only if φ is

nae-satisfiable.

• Our graph will have multiple edges between two nodes.

– Each such edge contributes one to the cut if its nodes

are separated.

aGarey, Johnson, and Stockmeyer (1976).
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The Proof

• Suppose φ’s m clauses are C1, C2, . . . , Cm.

• The boolean variables are x1, x2, . . . , xn.

• G has 2n nodes: x1, x2, . . . , xn,¬x1,¬x2, . . . ,¬xn.

• Each clause with 3 distinct literals makes a triangle in G.

• For each clause with two identical literals, there are two

parallel edges between the two distinct literals.

• No need to consider clauses with one literal (why?).

• For each variable xi, add ni copies of edge [xi,¬xi],

where ni is the number of occurrences of xi and ¬xi in

φ.a

aRegardless of whether both xi and ¬xi occur in φ.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 173

»�[M[L

[L »�[LQL�FRSLHV

[L

[M

»�[N

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 174

The Proof (continued)

• Set K = 5m.

• Suppose there is a cut (S, V − S) of size 5m or more.

• A clause (a triangle or two parallel edges) contributes at

most 2 to a cut no matter how you split it.

• Suppose both xi and ¬xi are on the same side of the cut.

• Then they together contribute at most 2ni edges to the

cut as they appear in at most ni different clauses.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 175

»�[L

[L

QL�ØWULDQJOHVÙ

Q L�S
DUD

OOH
O�OL

QHV

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 176



The Proof (continued)

• Changing the side of a literal contributing at most ni to

the cut does not decrease the size of the cut.

• Hence we assume variables are separated from their

negations.

• The total number of edges in the cut that join opposite

literals is
∑

i ni = 3m.

– The total number of literals is 3m.
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The Proof (concluded)

• The remaining 2m edges in the cut must come from the

m triangles or parallel edges that correspond to the

clauses.

• As each can contribute at most 2 to the cut, all are split.

• A split clause means at least one of its literals is true

and at least one false.

• The other direction is left as an exercise.
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• (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x3 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).

• The cut size is 13 < 5 × 3 = 15.
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• (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x3 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).

• The cut size is now 15.
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A Remark

• We had proved that max cut is NP-complete for

multigraphs.

• How about proving the same thing for simple graphs?a

• For 4sat, how do you modify the proof?b

aContributed by Mr. Tai-Dai Chou (J93922005) on June 2, 2005.
bContributed by Mr. Chien-Lin Chen (J94922015) on June 8, 2006.
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max bisection

• max cut becomes max bisection if we require that

|S| = |V − S|.

• It has many applications, especially in VLSI layout.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 182

max bisection Is NP-Complete

• We shall reduce the more general max cut to max

bisection.

• Add |V | isolated nodes to G to yield G′.

• G′ has 2 × |V | nodes.

• As the new nodes have no edges, moving them around

contributes nothing to the cut.
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The Proof (concluded)

• Every cut (S, V − S) of G = (V, E) can be made into a

bisection by appropriately allocating the new nodes

between S and V − S.

• Hence each cut of G can be made a cut of G′ of the

same size, and vice versa.
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bisection width

• bisection width is like max bisection except that it

asks if there is a bisection of size at most K (sort of min

bisection).

• Unlike min cut, bisection width remains

NP-complete.

– A graph G = (V, E), where |V | = 2n, has a bisection

of size K if and only if the complement of G has a

bisection of size n2 − K.

– So G has a bisection of size ≥ K if and only if its

complement has a bisection of size ≤ n2 − K.
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Illustration
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hamiltonian path Is NP-Completea

Theorem 16 Given an undirected graph, the question

whether it has a Hamiltonian path is NP-complete.

aKarp (1972).
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tsp (d) Is NP-Complete

Corollary 17 tsp (d) is NP-complete.

• Consider a graph G with n nodes.

• Define dij = 1 if [ i, j ] ∈ G and dij = 2 if [ i, j ] 6∈ G.

• Set the budget B = n + 1.

• Suppose G has no Hamiltonian paths.

• Then every tour on the new graph must contain at least

two edges with weight 2.

– Otherwise, by removing up to one edge with weight

2, one obtains a Hamiltonian path, a contradiction.
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tsp (d) Is NP-Complete (concluded)

• The total cost is then at least (n− 2) + 2 · 2 = n + 2 > B.

• On the other hand, suppose G has Hamiltonian paths.

• Then there is a tour on the new graph containing at

most one edge with weight 2.

• The total cost is then at most (n − 1) + 2 = n + 1 = B.

• We conclude that there is a tour of length B or less if

and only if G has a Hamiltonian path.
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Graph Coloring

• k-coloring asks if the nodes of a graph can be colored

with ≤ k colors such that no two adjacent nodes have

the same color.

• 2-coloring is in P (why?).

• But 3-coloring is NP-complete (see next page).

• k-coloring is NP-complete for k ≥ 3 (why?).
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3-coloring Is NP-Completea

• We will reduce naesat to 3-coloring.

• We are given a set of clauses C1, C2, . . . , Cm each with 3

literals.

• The boolean variables are x1, x2, . . . , xn.

• We shall construct a graph G such that it can be colored

with colors {0, 1, 2} if and only if all the clauses can be

nae-satisfied.

aKarp (1972).
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The Proof (continued)

• Every variable xi is involved in a triangle [ a, xi,¬xi ]

with a common node a.

• Each clause Ci = (ci1 ∨ ci2 ∨ ci3) is also represented by a

triangle

[ ci1, ci2, ci3 ].

– Node cij with the same label as one in some triangle

[ a, xk,¬xk ] represent distinct nodes.

• There is an edge between cij and the node that

represents the jth literal of Ci.
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The Proof (continued)

Suppose the graph is 3-colorable.

• Assume without loss of generality that node a takes the

color 2.

• A triangle must use up all 3 colors.

• As a result, one of xi and ¬xi must take the color 0 and

the other 1.
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The Proof (continued)

• Treat 1 as true and 0 as false.a

– We were dealing only with those triangles with the a

node, not the clause triangles.

• The resulting truth assignment is clearly contradiction

free.

• As each clause triangle contains one color 1 and one

color 0, the clauses are nae-satisfied.

aThe opposite also works.
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The Proof (continued)

Suppose the clauses are nae-satisfiable.

• Color node a with color 2.

• Color the nodes representing literals by their truth

values (color 0 for false and color 1 for true).

– We were dealing only with those triangles with the a

node, not the clause triangles.
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The Proof (concluded)

• For each clause triangle:

– Pick any two literals with opposite truth values.

– Color the corresponding nodes with 0 if the literal is

true and 1 if it is false.

– Color the remaining node with color 2.

• The coloring is legitimate.

– If literal w of a clause triangle has color 2, then its

color will never be an issue.

– If literal w of a clause triangle has color 1, then it

must be connected up to literal w with color 0.

– If literal w of a clause triangle has color 0, then it

must be connected up to literal w with color 1.
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tripartite matching

• We are given three sets B, G, and H, each containing n

elements.

• Let T ⊆ B × G × H be a ternary relation.

• tripartite matching asks if there is a set of n triples

in T , none of which has a component in common.

– Each element in B is matched to a different element

in G and different element in H.

Theorem 18 (Karp (1972)) tripartite matching is

NP-complete.
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Related Problems

• We are given a family F = {S1, S2, . . . , Sn} of subsets of

a finite set U and a budget B.

• set covering asks if there exists a set of B sets in F

whose union is U .

• set packing asks if there are B disjoint sets in F .

• Assume |U | = 3m for some m ∈ N and |Si| = 3 for all i.

• exact cover by 3-sets asks if there are m sets in F

that are disjoint and have U as their union.
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SET COVERING SET PACKING
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Related Problems (concluded)

Corollary 19 set covering, set packing, and exact

cover by 3-sets are all NP-complete.
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The knapsack Problem

• There is a set of n items.

• Item i has value vi ∈ Z
+ and weight wi ∈ Z

+.

• We are given K ∈ Z
+ and W ∈ Z

+.

• knapsack asks if there exists a subset S ⊆ {1, 2, . . . , n}

such that
∑

i∈S wi ≤ W and
∑

i∈S vi ≥ K.

– We want to achieve the maximum satisfaction within

the budget.
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knapsack Is NP-Complete

• knapsack ∈ NP: Guess an S and verify the constraints.

• We assume vi = wi for all i and K = W .

• knapsack now asks if a subset of {v1, v2, . . . , vn} adds

up to exactly K.

– Picture yourself as a radio DJ.

– Or a person trying to control the calories intake.

• We shall reduce exact cover by 3-sets to knapsack.
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The Proof (continued)

• We are given a family F = {S1, S2, . . . , Sn} of size-3

subsets of U = {1, 2, . . . , 3m}.

• exact cover by 3-sets asks if there are m disjoint

sets in F that cover the set U .

• Think of a set as a bit vector in {0, 1}3m.

– 001100010 means the set {3, 4, 8}, and 110010000

means the set {1, 2, 5}.

• Our goal is

3m
︷ ︸︸ ︷

11 · · · 1.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205

The Proof (continued)

• A bit vector can also be considered as a binary number.

• Set union resembles addition.

– 001100010 + 110010000 = 111110010, which denotes

the set {1, 2, 3, 4, 5, 8}, as desired.

• Trouble occurs when there is carry.

– 001100010 + 001110000 = 010010010, which denotes

the set {2, 5, 8}, not the desired {3, 4, 5, 8}.
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The Proof (continued)

• Carry may also lead to a situation where we obtain our

solution 11 · · · 1 with more than m sets in F .

– 001100010+ 001110000+ 101100000+ 000001101 =

111111111.

– But this “solution” {1, 3, 4, 5, 6, 7, 8, 9} does not

correspond to an exact cover.

– And it uses 4 sets instead of the required 3.a

• To fix this problem, we enlarge the base just enough so

that there are no carries.

• Because there are n vectors in total, we change the base

from 2 to n + 1.
aThanks to a lively class discussion on November 20, 2002.
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The Proof (continued)

• Set vi to be the (n + 1)-ary number corresponding to the

bit vector encoding Si.

• Now in base n + 1, if there is a set S such that

∑

vi∈S vi =

3m
︷ ︸︸ ︷

11 · · · 1, then every bit position must be

contributed by exactly one vi and |S| = m.

• Finally, set

K =
3m−1∑

j=0

(n + 1)j =

3m
︷ ︸︸ ︷

11 · · · 1 (base n + 1).
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The Proof (continued)

• Suppose F admits an exact cover, say {S1, S2, . . . , Sm}.

• Then picking S = {v1, v2, . . . , vm} clearly results in

v1 + v2 + · · · + vm =

3m
︷ ︸︸ ︷

11 · · · 1 .

– It is important to note that the meaning of addition

(+) is independent of the base.a

– It is just regular addition.

aContributed by Mr. Kuan-Yu Chen (R92922047) on November 3,

2004.
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The Proof (concluded)

• On the other hand, suppose there exists an S such that

∑

vi∈S vi =

3m
︷ ︸︸ ︷

11 · · · 1 in base n + 1.

• The no-carry property implies that |S| = m and

{Si : vi ∈ S} is an exact cover.
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An Example

• Let m = 3, U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and

S1 = {1, 3, 4},

S2 = {2, 3, 4},

S3 = {2, 5, 6},

S4 = {6, 7, 8},

S5 = {7, 8, 9}.

• Note that n = 5, as there are 5 Si’s.
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An Example (concluded)

• Our reduction produces

K =

3×3−1X

j=0

6j =

3×3

z }| {

11 · · · 1 (base 6),

v1 = 101100000,

v2 = 011100000,

v3 = 010011000,

v4 = 000001110,

v5 = 000000111.

• Note v1 + v3 + v5 = K.

• Indeed, S1 ∪ S3 ∪ S5 = {1, 2, 3, 4, 5, 6, 7, 8, 9}, an exact

cover by 3-sets.
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bin packings

• We are given N positive integers a1, a2, . . . , aN , an

integer C (the capacity), and an integer B (the number

of bins).

• bin packing asks if these numbers can be partitioned

into B subsets, each of which has total sum at most C.

• Think of packing bags at the check-out counter.

Theorem 20 bin packing is NP-complete.
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Finis
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