Boolean Logic

Boolean Logic ${ }^{\text {a }}$

Boolean variables: x_{1}, x_{2}, \ldots.
Literals: $x_{i}, \neg x_{i}$.
Boolean connectives: \vee, \wedge, \neg
Boolean expressions: Boolean variables, $\neg \phi$ (negation) $\phi_{1} \vee \phi_{2}$ (disjunction), $\phi_{1} \wedge \phi_{2}$ (conjunction).

- $\bigvee_{i=1}^{n} \phi_{i}$ stands for $\phi_{1} \vee \phi_{2} \vee \cdots \vee \phi_{n}$.
- $\bigwedge_{i=1}^{n} \phi_{i}$ stands for $\phi_{1} \wedge \phi_{2} \wedge \cdots \wedge \phi_{n}$.

Implications: $\phi_{1} \Rightarrow \phi_{2}$ is a shorthand for $\neg \phi_{1} \vee \phi_{2}$
Biconditionals: $\phi_{1} \Leftrightarrow \phi_{2}$ is a shorthand for
$\left(\phi_{1} \Rightarrow \phi_{2}\right) \wedge\left(\phi_{2} \Rightarrow \phi_{1}\right)$.
${ }^{\text {a }}$ Boole (1815-1864) in 1847 .

Truth Assignments

- A truth assignment T is a mapping from boolean variables to truth values true and false.
- A truth assignment is appropriate to boolean expression ϕ if it defines the truth value for every variable in ϕ.
$-\left\{x_{1}=\right.$ true, $x_{2}=$ false $\}$ is appropriate to $x_{1} \vee x_{2}$.

Satisfaction

- $T \models \phi$ means boolean expression ϕ is true under T; in other words, T satisfies ϕ.
- ϕ_{1} and ϕ_{2} are equivalent, written

$$
\phi_{1} \equiv \phi_{2}
$$

if for any truth assignment T appropriate to both of them, $T \models \phi_{1}$ if and only if $T \models \phi_{2}$.

- Equivalently, $T \models\left(\phi_{1} \Leftrightarrow \phi_{2}\right)$.

Truth Tables

- Suppose ϕ has n boolean variables.
- A truth table contains 2^{n} rows, one for each possible truth assignment of the n variables together with the truth value of ϕ under that truth assignment.
- A truth table can be used to prove if two boolean expressions are equivalent.
- Check if they give identical truth values under all 2^{n} truth assignments.

De Morgan's ${ }^{\text {a }}$ Laws

- De Morgan's laws say that

$$
\begin{aligned}
& \neg\left(\phi_{1} \wedge \phi_{2}\right)=\neg \phi_{1} \vee \neg \phi_{2}, \\
& \neg\left(\phi_{1} \vee \phi_{2}\right)=\neg \phi_{1} \wedge \neg \phi_{2}
\end{aligned}
$$

- Here is a proof for the first law:

ϕ_{1}	ϕ_{2}	$\neg\left(\phi_{1} \wedge \phi_{2}\right)$	$\neg \phi_{1} \vee \neg \phi_{2}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

${ }^{a}$ Augustus DeMorgan (1806-1871).

Conjunctive Normal Forms

- A boolean expression ϕ is in conjunctive normal form (CNF) if

$$
\phi=\bigwedge_{i=1}^{n} C_{i}
$$

where each clause C_{i} is the disjunction of one or more literals.

- For example, $\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right)$ is in CNF.
- Convention: An empty CNF is satisfiable, but a CNF containing an empty clause is not.

Disjunctive Normal Forms

- A boolean expression ϕ is in disjunctive normal form (DNF) if

$$
\phi=\bigvee_{i=1}^{n} D_{i}
$$

where each implicant D_{i} is the conjunction of one or more literals.

- For example,

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{2} \wedge x_{3}\right)
$$

is a DNF.

Any Expression ϕ Can Be Converted into CNFs and DNFs $\phi=x_{j}$: This is trivially true.
$\phi=\neg \phi_{1}$ and a CNF is sought: Turn ϕ_{1} into a DNF and apply de Morgan's laws to make a CNF for ϕ.
$\phi=\neg \phi_{1}$ and a DNF is sought: Turn ϕ_{1} into a CNF and apply de Morgan's laws to make a DNF for ϕ.
$\phi=\phi_{1} \vee \phi_{2}$ and a DNF is sought: Make ϕ_{1} and ϕ_{2} DNFs.
$\phi=\phi_{1} \vee \phi_{2}$ and a CNF is sought: Let $\phi_{1}=\bigwedge_{i=1}^{n_{1}} A_{i}$ and $\phi_{2}=\bigwedge_{i=1}^{n_{2}} B_{i}$ be CNFs. Set

$$
\phi=\bigwedge_{i=1}^{n_{1}} \bigwedge_{j=1}^{n_{2}}\left(A_{i} \vee B_{j}\right)
$$

Satisfiability

- A boolean expression ϕ is satisfiable if there is a truth assignment T appropriate to it such that $T \models \phi$.
- ϕ is valid or a tautology, ${ }^{\text {a }}$ written $\models \phi$, if $T \models \phi$ for all T appropriate to ϕ.
- ϕ is unsatisfiable if and only if ϕ is false under all appropriate truth assignments if and only if $\neg \phi$ is valid.
${ }^{a}$ Wittgenstein (1889-1951) in 1922. Wittgenstein is one of the most important philosophers of all time. "God has arrived," the great economist Keynes (1883-1946) said of him on January 18, 1928. "I met him on the 5:15 train."

SATISFIABILITY (SAT)

- The length of a boolean expression is the length of the string encoding it.
- satisfiability (sat): Given a CNF ϕ, is it satisfiable?
- Solvable in time $O\left(n^{2} 2^{n}\right)$ on a TM by the truth table method.
- Solvable in polynomial time on an NTM, hence in NP (p. 51).
- A most important problem in answering the $\mathrm{P}=\mathrm{NP}$ problem (p. 142).

UNSATISFIABILITY (UNSAT or SAT COMPLEMENT) and VALIDITY

- unsat (SAT COMPLEMENT): Given a boolean expression ϕ, is it unsatisfiable?
- validity: Given a boolean expression ϕ, is it valid? $-\phi$ is valid if and only if $\neg \phi$ is unsatisfiable.
- So unsat and validity have the same complexity.
- Both are solvable in time $O\left(n^{2} 2^{n}\right)$ on a TM by the truth table method.

Boolean Functions

- An n-ary boolean function is a function

$$
f:\{\text { true }, \text { false }\}^{n} \rightarrow\{\text { true }, \text { false }\}
$$

- It can be represented by a truth table.
- There are $2^{2^{n}}$ such boolean functions.
- Each of the 2^{n} truth assignments can make f true or false.

Boolean Functions (concluded)

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$
0	0	1
0	1	1
1	0	0
1	1	1

The corresponding boolean expression:

$$
\left(\neg x_{1} \wedge \neg x_{2}\right) \vee\left(\neg x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge x_{2}\right)
$$

© 2006 Prof. Yuh-Dauh Lyuu, National Taiwan University
Page 91

Boolean Functions (continued)

- A boolean expression expresses a boolean function.
- Think of its truth value under all truth assignments.
- A boolean function expresses a boolean expression
$-\bigvee_{T \models \phi, \text { literal } y_{i} \text { is true under } T}\left(y_{1} \wedge \cdots \wedge y_{n}\right)$.
* $y_{1} \wedge \cdots \wedge y_{n}$ is the minterm over $\left\{x_{1}, \ldots, x_{n}\right\}$ for T.
- The length ${ }^{\text {a }}$ is $\leq n 2^{n} \leq 2^{2 n}$.
- In general, the exponential length in n cannot be avoided!
${ }^{a}$ We count the logical connectives here.

Boolean Circuits

- A boolean circuit is a graph C whose nodes are the gates.
- There are no cycles in C.
- All nodes have indegree (number of incoming edges) equal to 0,1 , or 2 .
- Each gate has a sort from

$$
\left\{\text { true }, \text { false }, \vee, \wedge, \neg, x_{1}, x_{2}, \ldots\right\}
$$

Boolean Circuits (concluded)

- Gates of sort from $\left\{\right.$ true, false, $\left.x_{1}, x_{2}, \ldots\right\}$ are the inputs of C and have an indegree of zero.
- The output gate(s) has no outgoing edges.
- A boolean circuit computes a boolean function.
- The same boolean function can be computed by infinitely many boolean circuits.

Boolean Circuits and Expressions

- They are equivalent representations.
- One can construct one from the other:

CIRCUIT SAT and CIRCUIT VALUE

CIRCUIT SAT: Given a circuit, is there a truth assignment such that the circuit outputs true?

CIRCUIT VALUE: The same as CIRCUIT SAT except that the circuit has no variable gates.

- Circuit sat \in NP: Guess a truth assignment and then evaluate the circuit.
- circuit value $\in \mathrm{P}$: Evaluate the circuit from the input gates gradually towards the output gate.

Relations between Complexity Classes

Important Time Complexity Classes

- We write expressions like n^{k} to denote the union of all complexity classes, one for each value of k.
- For example,

$$
\operatorname{NTIME}\left(n^{k}\right)=\bigcup_{j>0} \operatorname{NTIME}\left(n^{j}\right) .
$$

Degrees of Difficulty

- When is a problem more difficult than another?
- B reduces to A if there is a transformation R which for every input x of B yields an equivalent input $R(x)$ of A .
- The answer to x for B is the same as the answer to $R(x)$ for A .
- There must be restrictions on the complexity of computing R.
- Otherwise, $R(x)$ might as well solve B.

Degrees of Difficulty (concluded)

- Problem A is at least as hard as problem B if B reduces to A.
- This makes intuitive sense: If A is able to solve your problem B, then A must be at least as powerful.

Reduction

Solving problem B by calling the algorithm for problem once and without further processing its answer.

Comments ${ }^{\text {a }}$

- Suppose B reduces to A via a transformation R.
- The input x is an instance of B.
- The output $R(x)$ is an instance of A.
- $R(x)$ may not span all possible instances of A.
- So some instances of A may never appear in the reduction.
${ }^{\text {a }}$ Contributed by Mr. Ming-Feng Tsai (D92922003) on October 29, 2003.

Reduction between Languages

- Language L_{1} is reducible to L_{2} if there is a function R computable by a deterministic TM in polynomial time.
- Furthermore, for all inputs $x, x \in L_{1}$ if and only if $R(x) \in L_{2}$.
- R is said to be a reduction from L_{1} to L_{2}.
- If R is a reduction from L_{1} to L_{2}, then $R(x) \in L_{2}$ is a legitimate algorithm for $x \in L_{1}$.

HAMILTONIAN PATH

- A Hamiltonian path of a graph is a path that visits every node of the graph exactly once.
- Suppose graph G has n nodes: $1,2, \ldots, n$.
- A Hamiltonian path can be expressed as a permutation π of $\{1,2, \ldots, n\}$ such that
$-\pi(i)=j$ means the i th position is occupied by node j.
$-(\pi(i), \pi(i+1)) \in G$ for $i=1,2, \ldots, n-1$.
- hamiltonian path asks if a graph has a Hamiltonian path.

Reduction of HAMILTONIAN PATH to SAT

- Given a graph G, we shall construct a CNF $R(G)$ such that $R(G)$ is satisfiable if and only if G has a Hamiltonian path.
- $R(G)$ has n^{2} boolean variables $x_{i j}, 1 \leq i, j \leq n$.
- $x_{i j}$ means
the i th position in the Hamiltonian path is occupied by node j.

The Clauses of $R(G)$ and Their Intended Meanings

1. Each node j must appear in the path.

- $x_{1 j} \vee x_{2 j} \vee \cdots \vee x_{n j}$ for each j.

2. No node j appears twice in the path.

- $\neg x_{i j} \vee \neg x_{k j}$ for all i, j, k with $i \neq k$.

3. Every position i on the path must be occupied.

- $x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n}$ for each i.

4. No two nodes j and k occupy the same position in the path.

- $\neg x_{i j} \vee \neg x_{i k}$ for all i, j, k with $j \neq k$.

5. Nonadjacent nodes i and j cannot be adjacent in the path

- $\neg x_{k i} \vee \neg x_{k+1, j}$ for all $(i, j) \notin G$ and $k=1,2, \ldots, n-1$.

The Proof

- $R(G)$ contains $O\left(n^{3}\right)$ clauses.
- $R(G)$ can be computed efficiently (simple exercise).
- Suppose $T \models R(G)$.
- From Clauses of 1 and 2 , for each node j there is a unique position i such that $T \models x_{i j}$.
- From Clauses of 3 and 4 , for each position i there is a unique node j such that $T \models x_{i j}$.
- So there is a permutation π of the nodes such that $\pi(i)=j$ if and only if $T \models x_{i j}$.

The Proof (concluded)

- Clauses of 5 furthermore guarantees that $(\pi(1), \pi(2), \ldots, \pi(n))$ is a Hamiltonian path.
- Conversely, suppose G has a Hamiltonian path

$$
(\pi(1), \pi(2), \ldots, \pi(n))
$$

where π is a permutation.

- Clearly, the truth assignment

$$
T\left(x_{i j}\right)=\text { true if and only if } \pi(i)=j
$$

satisfies all clauses of $R(G)$.

A Comment ${ }^{\text {a }}$

- An answer to "Is $R(G)$ is satisfiable?" does answer "Is G Hamiltonian?"
- But a positive answer does not give a Hamiltonian path for G.
- Providing witness is not a requirement of reduction.
- A positive answer to "Is $R(G)$ is satisfiable?" plus a satisfying truth assignment does provide us with a Hamiltonian path for G.

[^0]
Reduction of REACHABILITY to CIRCUIT VALUE

- Note that both problems are in P.
- Given a graph $G=(V, E)$, we shall construct a variable-free circuit $R(G)$.
- The output of $R(G)$ is true if and only if there is a path from node 1 to node n in G.
- Idea: the Floyd-Warshall algorithm.

The Gates

- The gates are
- $g_{i j k}$ with $1 \leq i, j \leq n$ and $0 \leq k \leq n$.
- $h_{i j k}$ with $1 \leq i, j, k \leq n$.
- $g_{i j k}$: There is a path from node i to node j without passing through a node bigger than k.
- $h_{i j k}$: There is a path from node i to node j passing through k but not any node bigger than k.
- Input gate $g_{i j 0}=$ true if and only if $i=j$ or $(i, j) \in E$.

The Construction

- $h_{i j k}$ is an AND gate with predecessors $g_{i, k, k-1}$ and $g_{k, j, k-1}$, where $k=1,2, \ldots, n$.
- $g_{i j k}$ is an OR gate with predecessors $g_{i, j, k-1}$ and $h_{i, j, k}$, where $k=1,2, \ldots, n$.
- $g_{1 n n}$ is the output gate.
- Interestingly, $R(G)$ uses no \neg gates: It is a monotone circuit.

Reduction of CIRCUIT SAT to SAT

- Given a circuit C, we shall construct a boolean expression $R(C)$ such that $R(C)$ is satisfiable if and only if C is satisfiable.
- $R(C)$ will turn out to be a CNF.
- The variables of $R(C)$ are those of C plus g for each gate g of C.
- Each gate of C will be turned into equivalent clauses of $R(C)$.
- Recall that clauses are \wedge-ed together.

The Clauses of $R(C)$

g is a variable gate x : Add clauses $(\neg g \vee x)$ and $(g \vee \neg x)$.

- Meaning: $g \Leftrightarrow x$.
g is a true gate: Add clause (g).
- Meaning: g must be true to make $R(C)$ true.
g is a false gate: Add clause $(\neg g)$.
- Meaning: g must be false to make $R(C)$ true
g is a \neg gate with predecessor gate h : Add clauses $(\neg g \vee \neg h)$ and $(g \vee h)$.

The Clauses of $R(C)$ (concluded)

g is a \vee gate with predecessor gates h and h^{\prime} : Add clauses $(\neg h \vee g),\left(\neg h^{\prime} \vee g\right)$, and $\left(h \vee h^{\prime} \vee \neg g\right)$.

- Meaning: $g \Leftrightarrow\left(h \vee h^{\prime}\right)$.
g is a \wedge gate with predecessor gates h and h^{\prime} : Add clauses $(\neg g \vee h),\left(\neg g \vee h^{\prime}\right)$, and $\left(\neg h \vee \neg h^{\prime} \vee g\right)$.
- Meaning: $g \Leftrightarrow\left(h \wedge h^{\prime}\right)$.
g is the output gate: Add clause (g).
- Meaning: g must be true to make $R(C)$ true.

Composition of Reductions

Proposition 9 If R_{12} is a reduction from L_{1} to L_{2} and R_{23} is a reduction from L_{2} to L_{3}, then the composition $R_{12} \circ R_{23}$ is a reduction from L_{1} to L_{3}.

- Clearly $x \in L_{1}$ if and only if $R_{23}\left(R_{12}(x)\right) \in L_{3}$.
- It is also clear that $R_{12} \circ R_{23}$ can be computed in polynomial time.
- Meaning: $g \Leftrightarrow \neg h$.

[^0]: ${ }^{a}$ Contributed by Ms. Amy Liu (J94922016) on May 29, 2006

