Ρ

- By the linear speedup theorem, any polynomial time bound can be represented by its leading term n^k for some k ≥ 1.
- If L is a polynomially decidable language, it is in $TIME(n^k)$ for some $k \in \mathbb{N}$.

- Clearly, $\text{TIME}(n^k) \subseteq \text{TIME}(n^{k+1})$.

• The union of all polynomially decidable languages is denoted by P:

$$\mathbf{P} = \bigcup_{k>0} \mathrm{TIME}(n^k).$$

• Problems in P can be efficiently solved.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 47

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 49

$\mathsf{Nondeterminism}^{\mathrm{a}}$

- A nondeterministic Turing machine (NTM) is a quadruple $N = (K, \Sigma, \Delta, s)$.
- K, Σ, s are as before.
- $\Delta \subseteq K \times \Sigma \rightarrow (K \cup \{h, \text{"yes", "no"}\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}$ is a relation, not a function.
 - For each state-symbol combination, there may be more than one next steps—or none at all.
- A configuration yields another configuration in one step if there *exists* a rule in Δ that makes this happen.

^aRabin and Scott (1959).

Decidability under Nondeterminism

- Let L be a language and N be an NTM.
- N decides L if for any x ∈ Σ*, x ∈ L if and only if there is a sequence of valid configurations that ends in "yes."
 - It is not required that the NTM halts in all computation paths.
 - If $x \notin L$, no nondeterministic choices should lead to a "yes" state.
- What is key is the algorithm's overall behavior not whether it gives a correct answer for each particular run.
- Determinism is a special case of nondeterminism.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 51

Analysis The algorithm decides language {\$\phi\$: \$\phi\$ is satisfiable}. The computation tree is a complete binary tree of depth n. Every computation path corresponds to a particular truth assignment out of 2ⁿ. \$\phi\$ is satisfiable if and only if there is a computation path (truth assignment) that results in "yes." General paradigm: Guess a "proof" and then verify it.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 53

The Traveling Salesman Problem

- We are given n cities 1, 2, ..., n and integer distances d_{ij} between any two cities i and j.
- Assume $d_{ij} = d_{ji}$ for convenience.
- The **traveling salesman problem** (TSP) asks for the total distance of the shortest tour of the cities.
- The decision version TSP (D) asks if there is a tour with a total distance at most *B*, where *B* is an input.

A Nondeterministic Algorithm for TSP (D) 1: for i = 1, 2, ..., n do 2: Guess $x_i \in \{1, 2, ..., n\}$; {The *i*th city.} 3: end for 4: $x_{n+1} := x_1$; 5: {Verification stage:} 6: if $x_1, x_2, ..., x_n$ are distinct and $\sum_{i=1}^n d_{x_i, x_{i+1}} \leq B$ then 7: "yes"; 8: else 9: "no"; 10: end if

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 55

Time Complexity Classes under Nondeterminism

- NTIME(f(n)) is the set of languages decided by NTMs within time f(n).
- NTIME(f(n)) is a complexity class.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 57

Time Complexity under Nondeterminism

- Nondeterministic machine N decides L in time f(n), where $f : \mathbb{N} \to \mathbb{N}$, if
 - N decides L, and
 - for any $x \in \Sigma^*$, N does not have a computation path longer than f(|x|).
- We charge only the "depth" of the computation tree.

$$NP = \bigcup_{k>0} NTIME(n^k).$$

NP

• Clearly $P \subseteq NP$.

• Define

- Think of NP as efficiently *verifiable* problems.
 - Boolean satisfiability (SAT).
 - TSP (D).
- The most important open problem in computer science is whether P = NP.

Simulating Nondeterministic TMs

Theorem 4 Suppose language L is decided by an NTM N in time f(n). Then it is decided by a 3-string deterministic TM M in time $O(c^{f(n)})$, where c > 1 is some constant depending on N.

- On input x, M goes down every computation path of N using *depth-first* search (but M does *not* know f(n)).
 - As M is time-bounded, the depth-first search will not run indefinitely.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 59

Undecidability

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 61

It seemed unworthy of a grown man to spend his time on such trivialities, but what was I to do? — Bertrand Russell (1872–1970), *Autobiography*, Vol. I

The Proof (concluded)

- If some path leads to "yes," then M enters the "yes" state.
- If none of the paths leads to "yes," then M enters the "no" state.

Corollary 5 NTIME $(f(n))) \subseteq \bigcup_{c>1} \text{TIME}(c^{f(n)}).$

Universal Turing Machine^a

- A universal Turing machine U interprets the input as the *description* of a TM M concatenated with the *description* of an input to that machine, x.
 - Both M and x are over the alphabet of U.
- U simulates M on x so that

$$U(M;x) = M(x)$$

• U is like a modern computer, which executes any valid machine code, or a Java Virtual machine, which executes any valid bytecode.

^aTuring (1936).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 63

H Is Recursively Enumerable Use the universal TM U to simulate M on x. When M is about to halt, U enters a "yes" state. If M(x) diverges, so does U. This TM accepts H. Membership of x in any recursively enumerative language accepted by M can be answered by asking M; x ∈ H?

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 65

H Is Not Recursive

- Suppose there is a TM M_H that decides H.
- Consider the program D(M) that calls M_H :
 - 1: if $M_H(M; M) =$ "yes" then
 - 2: \nearrow ; {Writing an infinite loop is easy, right?}
 - 3: else
 - $4{:}\quad ``yes";$
 - 5: end if
- Consider D(D):
 - $-D(D) = \nearrow M_H(D; D) = \text{"yes"} \Rightarrow D; D \in H \Rightarrow D(D) \neq \nearrow, \text{ a contradiction.}$
 - $D(D) = "yes" \Rightarrow M_H(D; D) = "no" \Rightarrow D; D \notin H \Rightarrow D(D) = \nearrow, a \text{ contradiction.}$

The Halting Problem

- Undecidable problems are problems that have no algorithms or languages that are not recursive.
- We now define a concrete undecidable problem, the halting problem:

$$H = \{M; x : M(x) \neq \nearrow\}.$$

- Does M halt on input x?

Comments

- Two levels of interpretations of M:
 - A sequence of 0s and 1s (data).
 - An encoding of instructions (programs).
- There are no paradoxes.
 - Concepts should be familiar to computer scientists.
 - Supply a C compiler to a C compiler, a Lisp interpreter to a Lisp interpreter, etc.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 67

Self-Loop Paradoxes

Cantor's Paradox (1899): Let T be the set of all sets.

• Then $2^T \subseteq T$, but we know $|2^T| > |T|$ (Cantor's theorey)!

Eubulides: The Cretan says, "All Cretans are liars."

Liar's Paradox: "This sentence is false."

Sharon Stone in *The Specialist* (1994): "I'm not a woman you can trust."

More Undecidability

Theorem 6 $H^* = \{M : M \text{ halts on all inputs}\}$ is undecidable

• Given M; x, we construct the following machine:

 $M_x(y)$: if y = x then M(x) else halt.

- M_x halts on all inputs if and only if M halts on x.
- In other words, $M; x \in H$ if and only if $M_x \in H^*$.
- So if the said language were recursive, *H* would be recursive, a contradiction.
- This technique is called **reduction**.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 69

Reductions in Proving Undecidability

- Suppose we are asked to prove L is undecidable.
- Language H is known to be undecidable.
- We try to find a computable transformation (or reduction) R such that that^a

 $\forall x (R(x) \in L \text{ if and only if } x \in H).$

- We can answer " $x \in H$?" for any x by asking $R(x) \in L$?
- This suffices to prove that L is undecidable.

^aContributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.

Complements of Recursive Languages

Lemma 7 If L is recursive, then so is \overline{L} .

- Let L be decided by M (which is deterministic).
- Swap the "yes" state and the "no" state of M.
- The new machine decides \overline{L} .

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 71

Recursive and Recursively Enumerable Languages

Lemma 8 L is recursive if and only if both L and \overline{L} are recursively enumerable.

- Suppose both L and \overline{L} are recursively enumerable, accepted by M and \overline{M} , respectively.
- Simulate M and \overline{M} in an *interleaved* fashion.
- If M accepts, then $x \in L$ and M' halts on state "yes."
- If \bar{M} accepts, then $x \not\in L$ and M' halts on state "no."