CLIQUE NODE COVER

e We are given an undirected graph G and a goal K. e We are given an undirected graph G and a goal K.

e NODE COVER asks if there is a set C' with K or fewer e NODE COVER asks if there is a set C' with K or fewer
nodes such that each edge of G has at least one of its nodes such that each edge of G has at least one of its
endpoints in C. endpoints in C.
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CLIQUE Is NP-Complete
Q P NODE COVER Is NP-Complete
11 1 s NP- .
Corollary 17 CLIQUE is complete Corollary 18 NODE COVER is NP-complete.
Let G h 1 t of h 7 if
¢ G be the complement of G, where [z, ] € & if and e [ is an independent set of G = (V, E) if and only if
only if [z,y] € G.

V — I is a node cover of G.
e [ is an independent set in G < I is a clique in G.
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MIN CUT and MAX CUT A Cut

e A cut in an undirected graph G = (V, E) is a partition
of the nodes into two nonempty sets S and V — S.

e The size of a cut (S, V — S) is the number of edges
between S and V — S.

e MIN CUT € P by the maxflow algorithm.

‘ ‘ -’ »
\-- -

e MAX CUT asks if there is a cut of size at least K.

— K is part of the input.
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MAX CUT Is NP-Complete®

e We will reduce NAESAT to MAX CUT.

MIN CUT and MAX CUT (concluded) e Given an instance ¢ of 3SAT with m clauses, we shall

construct a graph G = (V, E) and a goal K such that:
e MAX CUT has applications in VLSI layout.

— There is a cut of size at least K if and only if ¢ is

— The minimum area of a VLSI layout of a graph is not NAE-satisfiable.

less than the square of its maximum cut size.?

§ e Our graph will have multiple edges between two nodes.
aRaspaud, Sykora, and Vrto (1995).

— Each such edge contributes one to the cut if its nodes

are separated.

aGarey, Johnson, and Stockmeyer (1976).
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The Proof

e Suppose ¢’s m clauses are C1,Cy, ..., Cp,.
e The boolean variables are x1,x2, ..., Ty,.
e GG has 2n nodes: x1,%9,..., Ty, OT1, T2, ..., Tp.

e Each clause with 3 distinct literals makes a triangle in G.

e For each clause with two identical literals, there are two
parallel edges between the two distinct literals.

e No need to consider clauses with one literal (why?).

e For each variable z;, add n; copies of edge [x;, ~z;],
where n; is the number of occurrences of x; and —z; in
¢ a

2Regardless of whether both z; and —x; occur in ¢.
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The Proof (continued)
Set K = 5m.
Suppose there is a cut (S,V — S) of size 5m or more.

A clause (a triangle or two parallel edges) contributes at
most 2 to a cut no matter how you split it.

Suppose both x; and —z; are on the same side of the cut.

Then they together contribute at most 2n; edges to the
cut as they appear in at most n; different clauses.
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The Proof (continued)

e Changing the side of a literal contributing at most n; to

the cut does not decrease the size of the cut.

e Hence we assume variables are separated from their

negations.
e The total number of edges in the cut that join opposite

literals is ), n; = 3m.
— The total number of literals is 3m.
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The Proof (concluded)

e The remaining 2m edges in the cut must come from the
m triangles or parallel edges that correspond to the

clauses.

e A split clause means at least one of its literals is true
and at least one false.

e The other direction is left as an exercise.

e As each can contribute at most 2 to the cut, all are split
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e The cut size is 13 < 5 x 3 = 15.
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e The cut size is now 15.
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The Proof (concluded)

e Every cut (S,V —S) of G = (V, E) can be made into a
bisection by appropriately allocating the new nodes

between S and V — S.
MAX BISECTION

) ) e Hence each cut of G can be made a cut of G’ of the
e MAX CUT becomes MAX BISECTION if we require that

18] = |V — 8.

same size, and vice versa.

e It has many applications, especially in VLSI layout.
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MAX BISECTION Is NP-Complete

We shall reduce the more general MAX CUT to MAX
BISECTION.

Add |V| isolated nodes to G to yield G'.

G’ has 2 x |V| nodes.

As the new nodes have no edges, moving them around
contributes nothing to the cut.
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