Prover and Verifier

• There are two parties to a proof.
 – The prover (Peggy).
 – The verifier (Victor).

• Given an assertion, the prover’s goal is to convince the verifier of its validity (completeness).

• The verifier’s objective is to accept only correct assertions (soundness).

• The verifier usually has an easier job than the prover.

• The setup is very much like the Turing test.\(^\text{a}\)

\(^a\)Turing (1950).

Interactive Proof Systems (concluded)

• The system decides \(L \) if the following two conditions hold for any common input \(x \).
 – If \(x \in L \), then the probability that \(x \) is accepted by the verifier is at least \(1 - 2^{-|x|} \).
 – If \(x \notin L \), then the probability that \(x \) is accepted by the verifier with any prover replacing the original prover is at most \(2^{-|x|} \).

• Neither the number of rounds nor the lengths of the messages can be more than a polynomial of \(|x| \).

Interactive Proof Systems

• An interactive proof for a language \(L \) is a sequence of questions and answers between the two parties.

• At the end of the interaction, the verifier decides based on the knowledge he acquired in the proof process whether the claim is true or false.

• The verifier must be a probabilistic polynomial-time algorithm.

• The prover runs an exponential-time algorithm.
 – If the prover is not more powerful than the verifier, no interaction is needed.

An Interactive Proof

\[P \quad \rightarrow \quad V \]

\[P \quad \rightarrow \quad V \]
The Relations of IP with Other Classes

- NP ⊆ IP.
 - IP becomes NP when the verifier is deterministic.
- BPP ⊆ IP.
 - IP becomes BPP when the verifier ignores the prover’s messages.
- IP actually coincides with PSPACE (see pp. 844ff for a proof).\(^a\)

\(^a\)Shamir (1990).

Graph Isomorphism

- \(V_1 = V_2 = \{1, 2, \ldots, n\}\).
- Graphs \(G_1 = (V_1, E_1)\) and \(G_2 = (V_2, E_2)\) are isomorphic if there exists a permutation \(\pi\) on \(\{1, 2, \ldots, n\}\) so that \((u, v) \in E_1 \iff (\pi(u), \pi(v)) \in E_2\).
- The task is to answer if \(G_1 \cong G_2\) (isomorphic).
- No known polynomial-time algorithms.
- The problem is in NP (hence IP).
- But it is not likely to be NP-complete.\(^a\)

\(^a\)Schöning (1987).

Graph Nonisomorphism

- \(V_1 = V_2 = \{1, 2, \ldots, n\}\).
- Graphs \(G_1 = (V_1, E_1)\) and \(G_2 = (V_2, E_2)\) are nonisomorphic if there exist no permutations \(\pi\) on \(\{1, 2, \ldots, n\}\) so that \((u, v) \in E_1 \iff (\pi(u), \pi(v)) \in E_2\).
- The task is to answer if \(G_1 \not\cong G_2\) (nonisomorphic).
- Again, no known polynomial-time algorithms.
 - It is in coNP, but how about NP or BPP?
 - It is not likely to be coNP-complete.
- Surprisingly, GRAPH NONISOMORPHISM \(\in\) IP.\(^a\)

\(^a\)Goldreich, Micali, and Wigderson (1986).
A 2-Round Algorithm

1: Victor selects a random \(i \in \{1, 2\} \);
2: Victor selects a random permutation \(\pi \) on \(\{1, 2, \ldots, n\} \);
3: Victor applies \(\pi \) on graph \(G_i \) to obtain graph \(H \);
4: Victor sends \((G_1, H)\) to Peggy;
5: if \(G_1 \cong H \) then
6: Peggy sends \(j = 1 \) to Victor;
7: else
8: Peggy sends \(j = 2 \) to Victor;
9: end if
10: if \(j = i \) then
11: Victor accepts;
12: else
13: Victor rejects;
14: end if

Analysis

• Victor runs in probabilistic polynomial time.
• Suppose the two graphs are not isomorphic.
 – Peggy is able to tell which \(G_i \) is isomorphic to \(H \).
 – So Victor always accepts.
• Suppose the two graphs are isomorphic.
 – No matter which \(i \) is picked by Victor, Peggy or any prover sees 2 identical graphs.
 – Peggy or any prover with exponential power has only probability one half of guessing \(i \) correctly.
 – So Victor erroneously accepts with probability \(1/2 \).
• Repeat the algorithm to obtain the desired probabilities.

Knowledge in Proofs

• Suppose I know a satisfying assignment to a satisfiable boolean expression.
• I can convince Alice of this by giving her the assignment.
• But then I give her more knowledge than necessary.
 – Alice can claim that she found the assignment!
 – Login authentication faces essentially the same issue.
 – See www.wired.com/wired/archive/1.05/atm_pr.html for a famous ATM fraud in the U.S.

Knowledge in Proofs (concluded)

• Digital signatures authenticate documents but not individuals.
• They hence do not solve the problem.
• Suppose I always give Alice random bits.
• Alice’s extracts no knowledge from me by any measure, but I prove nothing.
• Question 1: Can we design a protocol to convince Alice of (the knowledge of) a secret without revealing anything extra?
• Question 2: How to define this idea rigorously?
Zero Knowledge Proofs

An interactive proof protocol \((P, V)\) for language \(L\) has the perfect zero-knowledge property if:

- For every verifier \(V'\), there is an algorithm \(M\) with expected polynomial running time.
- \(M\) on any input \(x \in L\) generates the same probability distribution as the one that can be observed on the communication channel of \((P, V')\) on input \(x\).

\(^a\)Goldwasser, Micali, and Rackoff (1985).

Comments

- Zero knowledge is a property of the prover.
 - It is the robustness of the prover against attempts of the verifier to extract knowledge via interaction.
 - The verifier may deviate arbitrarily (but in polynomial time) from the predetermined program.
 - A verifier cannot use the transcript of the interaction to convince a third-party of the validity of the claim.
 - The proof is hence not transferable.

Comments (continued)

- Whatever a verifier can “learn” from the specified prover \(P\) via the communication channel could as well be computed from the verifier alone.
- The verifier does not learn anything except “\(x \in L\).”
- For all practical purposes “whatever” can be done after interacting with a zero-knowledge prover can be done by just believing that the claim is indeed valid.
- Zero-knowledge proofs yield no knowledge in the sense that they can be constructed by the verifier who believes the statement, and yet these proofs do convince him.

Comments (concluded)

- The “paradox” is resolved by noting that it is not the transcript of the conversation that convinces the verifier, but the fact that this conversation was held “on line.”
- There is no zero-knowledge requirement when \(x \notin L\).
- Computational zero-knowledge proofs are based on complexity assumptions.
- It is known that if one-way functions exist, then zero-knowledge proofs exist for every problem in NP.\(^a\)

\(^a\)Goldreich, Micali, and Wigderson (1986).
Will You Be Convinced?

• A newspaper commercial for hair-growing products for men.
 – A (for all practical purposes) bald man has a full head of hair after 3 months.
• A TV commercial for weight-loss products.
 – A (by any reasonable measure) overweight woman loses 10 kilograms in 10 weeks.

Quadratic Residuosity

• Let n be a product of two distinct primes.
• Assume extracting the square root of a quadratic residue modulo n is hard without knowing the factors.
• We next present a zero-knowledge proof for x being a quadratic residue.

Zero-Knowledge Proof of Quadratic Residuosity (continued)

1: for $m = 1, 2, \ldots, \log_2 n$ do
2: Peggy chooses a random $v \in \mathbb{Z}_n^*$ and sends $y = v^2 \mod n$ to Victor;
3: Victor chooses a random bit i and sends it to Peggy;
4: Peggy sends $z = u^i v \mod n$, where u is a square root of x; \{ $u^2 \equiv x \mod n.$ \}
5: Victor checks if $z^2 \equiv x^i y \mod n$;
6: end for
7: Victor accepts x if Line 5 is confirmed every time;

Analysis

• Suppose x is a quadratic nonresidue.
 – Peggy can answer only one of the two possible challenges.
 * Reason: a is a quadratic residue if and only if xa is a quadratic nonresidue.
 – So Peggy will be caught in any given round with probability one half.
Analysis (continued)

- Suppose \(x \) is a quadratic residue.
 - Peggy can answer all challenges.
 - So Victor will accept \(x \).
- How about the claim of zero knowledge?
- The transcript between Peggy and Victor when \(x \) is a quadratic residue can be generated without Peggy!
 - So interaction with Peggy is useless.

Analysis (concluded)

1: Bob chooses a random \(z \in \mathbb{Z}_n^* \);
2: Bob chooses a random bit \(i \);
3: Bob calculates \(y = z^2x^{-i} \mod n \);
4: Bob writes \((y, i, z)\) into the transcript;

Comments

- Bob cheats because \((y, i, z)\) is not generated in the same order as in the original transcript.
 - Bob picks Victor’s challenge first.
 - Bob then picks Peggy’s answer.
 - Bob finally patches the transcript.
 - So it is not the transcript that convinces Victor, but that conversation with Peggy is held “on line.”
- The same holds even if the transcript was generated by a cheating Victor’s interaction with (honest) Peggy, but we skip the details.

\(^a\)By definition, we do not need to consider the other case.
Zero-Knowledge Proof of 3 Colorability

1: \textbf{for} \ i = 1, 2, \ldots, |E|^2 \ \textbf{do}
2: \quad \text{Peggy chooses a random permutation } \pi \ \text{of the 3-coloring } \phi;
3: \quad \text{Peggy samples an encryption scheme randomly and sends}
4: \quad \pi(\phi(1)), \pi(\phi(2)), \ldots, \pi(\phi(|V|)) \ \text{encrypted to Victor;}
5: \quad \text{Victor chooses at random an edge } e \in E \ \text{and sends it to}
6: \quad \text{Peggy for the coloring of the endpoints of } e;
7: \quad \textbf{if} \ e = (u, v) \in E \ \textbf{then}
8: \quad \quad \text{Peggy reveals the coloring of } u \ \text{and } v \ \text{and “proves” that}
9: \quad \quad \text{they correspond to their encryption;}
10: \quad \quad \textbf{else}
11: \quad \quad \quad \text{Peggy stops;}
12: \quad \quad \textbf{end if}
13: \textbf{end for}

\[\text{Analysis} \]

- If the graph is 3-colorable and both Peggy and Victor follow the protocol, then Victor always accepts.
- If the graph is not 3-colorable and Victor follows the protocol, then however Peggy plays, Victor will accept with probability \(\leq (1 - m^{-1})m^2 \leq e^{-m} \), where \(m = |E| \).
- Thus the protocol is valid.
- This protocol yields no knowledge to Victor as all he gets is a bunch of random pairs.
- The proof that the protocol is zero-knowledge to any verifier is more intricate.

\[\text{Approximability} \]
Tackling Intractable Problems
- Many important problems are NP-complete or worse.
- Heuristics have been developed to attack them.
- They are approximation algorithms.
- How good are the approximations?
 - We are looking for theoretically guaranteed bounds, not "empirical" bounds.
- Are there NP problems that cannot be approximated well (assuming NP \neq P)?
- Are there NP problems that cannot be approximated at all (assuming NP \neq P)?

Some Definitions
- Given an optimization problem, each problem instance x has a set of feasible solutions $F(x)$.
- Each feasible solution $s \in F(x)$ has a cost $c(s) \in \mathbb{Z}^+$.
- The optimum cost is $\text{OPT}(x) = \min_{s \in F(x)} c(s)$ for a minimization problem.
- It is $\text{OPT}(x) = \max_{s \in F(x)} c(s)$ for a maximization problem.

Approximation Algorithms
- Let algorithm M on x returns a feasible solution.
- M is an ϵ-approximation algorithm, where $\epsilon \geq 0$, if for all x,
 \[\frac{|c(M(x)) - \text{OPT}(x)|}{\max(\text{OPT}(x), c(M(x)))} \leq \epsilon. \]
 - For a minimization problem,
 \[\frac{c(M(x)) - \min_{s \in F(x)} c(s)}{c(M(x))} \leq \epsilon. \]
 - For a maximization problem,
 \[\frac{\max_{s \in F(x)} c(s) - c(M(x))}{\max_{s \in F(x)} c(s)} \leq \epsilon. \]

Lower and Upper Bounds
- For a minimization problem,
 \[\min_{s \in F(x)} c(s) \leq c(M(x)) \leq \frac{\min_{s \in F(x)} c(s)}{1 - \epsilon}. \]
 - So approximation ratio $\frac{\min_{s \in F(x)} c(s)}{c(M(x))} \geq 1 - \epsilon$.
- For a maximization problem,
 \[(1 - \epsilon) \times \max_{s \in F(x)} c(s) \leq c(M(x)) \leq \max_{s \in F(x)} c(s). \]
 - So approximation ratio $\frac{c(M(x))}{\max_{s \in F(x)} c(s)} \geq 1 - \epsilon$.
- The above are alternative definitions of ϵ-approximation algorithms.
Range Bounds

- \(\epsilon \) takes values between 0 and 1.
- For maximization problems, an \(\epsilon \)-approximation algorithm returns solutions within \([(1 - \epsilon) \times \text{OPT}, \text{OPT}] \).
- For minimization problems, an \(\epsilon \)-approximation algorithm returns solutions within \([\text{OPT}, \frac{\text{OPT}}{1-\epsilon}] \).
- For each NP-complete optimization problem, we shall be interested in determining the smallest \(\epsilon \) for which there is a polynomial-time \(\epsilon \)-approximation algorithm.
- Sometimes \(\epsilon \) has no minimum value.

Approximation Thresholds

- The approximation threshold is the greatest lower bound of all \(\epsilon \geq 0 \) such that there is a polynomial-time \(\epsilon \)-approximation algorithm.
- The approximation threshold of an optimization problem can be anywhere between 0 (approximation to any desired degree) and 1 (no approximation is possible).
- If \(P = \text{NP} \), then all optimization problems in \(\text{NP} \) have approximation threshold 0.
- So we assume \(P \neq \text{NP} \) for the rest of the discussion.

NODE COVER

- NODE COVER seeks the smallest \(C \subseteq V \) in graph \(G = (V, E) \) such that for each edge in \(E \), at least one of its endpoints is in \(C \).
- A heuristic to obtain a good node cover is to iteratively move a node with the highest degree to the cover.
- This turns out to produce ratio \(\frac{c(M(x))}{\text{OPT}(x)} = \Theta(\log n) \).
- It is not an \(\epsilon \)-approximation algorithm for any \(\epsilon < 1 \).

A 0.5-Approximation Algorithm\(^a\)

1: \(C := \emptyset; \)
2: \textbf{while} \(E \neq \emptyset \) \textbf{do}
3: \quad Delete an arbitrary edge \([u, v]\) from \(E \);
4: \quad Delete edges incident with \(u \) and \(v \) from \(E \);
5: \quad Add \(u \) and \(v \) to \(C \); \{Add 2 nodes to \(C \) each time.\}
6: \textbf{end while}
7: \textbf{return} \(C \);

\(^a\)Johnson (1974).
Analysis

- C contains $|C|/2$ edges.
- No two edges of C share a node.
- Any node cover must contain at least one node from each of these edges.
- This means that $\text{opt}(G) \geq |C|/2$.
- So
 $$\frac{\text{opt}(G)}{|C|} \geq 1/2.$$
- The approximation threshold is ≤ 0.5.
- We remark that 0.5 is also the lower bound for any “greedy” algorithms.a

aDavis and Impagliazzo (2004).

The 0.5 Bound Is Tight for the Algorithma

Maximum Satisfiability

- Given a set of clauses, \textsc{maxsat} seeks the truth assignment that satisfies the most.
- \textsc{max2sat} is already NP-complete (p. 267).
- Consider the more general k-\textsc{maxgsat} for constant k.
 - Given a set of boolean expressions
 \[\Phi = \{\phi_1, \phi_2, \ldots, \phi_m\} \]
 in n variables.
 - Each ϕ_i is a \textit{general} expression involving k variables.
 - k-\textsc{maxgsat} seeks the truth assignment that satisfies the most expressions.
A Probabilistic Interpretation of an Algorithm

- Each ϕ_i involves exactly k variables and is satisfied by t_i of the 2^k truth assignments.
- A random truth assignment $\in \{0, 1\}^n$ satisfies ϕ_i with probability $p(\phi_i) = t_i/2^k$.
 - $p(\phi_i)$ is easy to calculate for a $k = O(\log n)$.
- Hence a random truth assignment satisfies an expected number
 $$p(\Phi) = \sum_{i=1}^{m} p(\phi_i)$$
 of expressions ϕ_i.

The Search Procedure

- Clearly
 $$p(\Phi) = \frac{1}{2} \{ p(\Phi[x_1 = \text{true}]) + p(\Phi[x_1 = \text{false}]) \}.$$
- Select the $t_1 \in \{\text{true}, \text{false}\}$ such that $p(\Phi[x_1 = t_1])$ is the larger one.
- Note that $p(\Phi[x_1 = t_1]) \geq p(\Phi)$.
- Repeat with expression $\Phi[x_1 = t_1]$ until all variables x_i have been given truth values t_i and all ϕ_i either true or false.

The Search Procedure (concluded)

- By our hill-climbing procedure,
 $$p(\Phi[x_1 = t_1, x_2 = t_2, \ldots, x_n = t_n]) \geq \ldots \geq p(\Phi[x_1 = t_1, x_2 = t_2]) \geq p(\Phi[x_1 = t_1]) \geq p(\Phi).$$
- So at least $p(\Phi)$ expressions are satisfied by truth assignment (t_1, t_2, \ldots, t_n).
- The algorithm is deterministic.

Approximation Analysis

- The optimum is at most the number of satisfiable ϕ_i—i.e., those with $p(\phi_i) > 0$.
- Hence the ratio of algorithm’s output vs. the optimum is
 $$\frac{p(\Phi)}{\sum_{p(\phi_i) > 0} 1} = \frac{\sum_{i} p(\phi_i)}{\sum_{p(\phi_i) > 0} 1} \geq \min_{p(\phi_i) > 0} p(\phi_i).$$
- The heuristic is a polynomial-time ϵ-approximation algorithm with $\epsilon = 1 - \min_{p(\phi_i) > 0} p(\phi_i)$.
- Because $p(\phi_i) \geq 2^{-k}$, the heuristic is a polynomial-time ϵ-approximation algorithm with $\epsilon = 1 - 2^{-k}$.
Back to MAXSAT

- In MAXSAT, the ϕ_i’s are clauses.
- Hence $p(\phi_i) \geq 1/2$, which happens when ϕ_i contains a single literal.
- And the heuristic becomes a polynomial-time ϵ-approximation algorithm with $\epsilon = 1/2$.
- If the clauses have k distinct literals, $p(\phi_i) = 1 - 2^{-k}$.
- And the heuristic becomes a polynomial-time ϵ-approximation algorithm with $\epsilon = 2^{-k}$.
 - This is the best possible for $k \geq 3$ unless P = NP.

Johnson (1974).

MAX CUT Revisited

- The NP-complete MAX CUT seeks to partition the nodes of graph $G = (V, E)$ into $(S, V - S)$ so that there are as many edges as possible between S and $V - S$ (p. 289).
- Local search starts from a feasible solution and performs “local” improvements until none are possible.

A 0.5-Approximation Algorithm for MAX CUT

1: $S := \emptyset$
2: while $\exists v \in V$ whose switching sides results in a larger cut do
3: $S := S \cup \{v\}$
4: end while
5: return S

- A 0.12-approximation algorithm exists.
- 0.059-approximation algorithms do not exist unless NP = ZPP.

Analysis (continued)

- Partition $V = V_1 \cup V_2 \cup V_3 \cup V_4$, where our algorithm returns $(V_1 \cup V_2, V_3 \cup V_4)$ and the optimum cut is $(V_1 \cup V_3, V_2 \cup V_4)$.
- Let e_{ij} be the number of edges between V_i and V_j.
- Because no migration of nodes can improve the algorithm’s cut, for each node in V_1, its edges to $V_1 \cup V_2$ are outnumbered by those to $V_3 \cup V_4$.
- Considering all nodes in V_1 together, we have

 $2e_{11} + e_{12} \leq e_{13} + e_{14}$, which implies

 $e_{12} \leq e_{13} + e_{14}$.

Analysis (concluded)

- Similarly,

 $e_{12} \leq e_{23} + e_{24}$
 $e_{34} \leq e_{23} + e_{13}$
 $e_{34} \leq e_{14} + e_{24}$

- Adding all four inequalities, dividing both sides by 2, and adding the inequality

 $e_{14} + e_{23} \leq e_{14} + e_{23} + e_{13} + e_{24}$, we obtain

 $e_{12} + e_{34} + e_{14} + e_{23} \leq 2(e_{13} + e_{14} + e_{23} + e_{24})$.
- The above says our solution is at least half the optimum.