coNP and Function Problems

coNP

- By definition, coNP is the class of problems whose complement is in NP.
- NP is the class of problems that have succinct certificates (recall Proposition 31 on p. 254).
- coNP is therefore the class of problems that have succinct disqualifications:
 - A “no” instance of a problem in coNP possesses a short proof of its being a “no” instance.
 - Only “no” instances have such proofs.

coNP (continued)

- Suppose L is a coNP problem.
- There exists a polynomial-time nondeterministic algorithm M such that:
 - If $x \in L$, then $M(x) = \text{“yes”}$ for all computation paths.
 - If $x \notin L$, then $M(x) = \text{“no”}$ for some computation path.
coNP (concluded)

- Clearly $P \subseteq \text{coNP}$.
- It is not known if $P = \text{NP} \cap \text{coNP}$.
 - Contrast this with $R = \text{RE} \cap \text{coRE}$ (see Proposition 11 on p. 126).

Some coNP Problems

- **Validity** $\in \text{coNP}$.
 - If ϕ is not valid, it can be disqualified very succinctly: a truth assignment that does not satisfy it.

- **SAT complement** $\in \text{coNP}$.
 - The disqualification is a truth assignment that satisfies it.

- **Hamiltonian path complement** $\in \text{coNP}$.
 - The disqualification is a Hamiltonian path.

An Alternative Characterization of coNP

Proposition 43 Let $L \subseteq \Sigma^*$ be a language. Then $L \in \text{coNP}$ if and only if there is a polynomially decidable and polynomially balanced relation R such that

$$L = \{ x : \forall y (x, y) \in R \}.$$

(As on p. 253, we assume $|y| \leq |x|^k$ for some k.)

- $\bar{L} = \{ x : (x, y) \in \neg R \text{ for some } y \}$.
- Because $\neg R$ remains polynomially balanced, $\bar{L} \in \text{NP}$ by Proposition 31 (p. 254).
- Hence $L \in \text{coNP}$ by definition.

coNP Completeness

Proposition 44 L is NP-complete if and only if its complement $\bar{L} = \Sigma^* - L$ is coNP-complete.

Proof (\Rightarrow; the \Leftarrow part is symmetric)

- Let \bar{L}' be any coNP language.
- Hence $L' \in \text{NP}$.
- Let R be the reduction from L' to L.
- So $x \in L'$ if and only if $R(x) \in L$.
- So $x \in \bar{L}$ if and only if $R(x) \in \bar{L}$.
- R is a reduction from \bar{L}' to \bar{L}.
Some coNP-Complete Problems

- SAT COMPLEMENT is coNP-complete.
 - SAT COMPLEMENT is the complement of SAT.
- VALIDITY is coNP-complete.
 - ϕ is valid if and only if $\neg\phi$ is not satisfiable.
 - The reduction from SAT COMPLEMENT to VALIDITY is hence easy.
- HAMILTONIAN PATH COMPLEMENT is coNP-complete.

Possible Relations between P, NP, coNP

1. $P = NP = coNP$.
2. $NP = coNP$ but $P \neq NP$.
3. $NP \neq coNP$ and $P \neq NP$.
 - This is current “consensus.”

coNP Hardness and NP Hardness

Proposition 45 If a coNP-hard problem is in NP, then $NP = coNP$.

- Let $L \in NP$ be coNP-hard.
- Let NTM M decide L.
- For any $L' \in coNP$, there is a reduction R from L' to L.
 - $L' \in NP$ as it is decided by NTM $M(R(x))$.
 - Alternatively, NP is closed under complement.
- Hence coNP \subseteq NP.
- The other direction NP \subseteq coNP is symmetric.

Proposition 46 If an NP-hard problem is in coNP, then $NP = coNP$.

Hence NP-complete problems are unlikely to be in coNP and coNP-complete problems are unlikely to be in NP.
The Primality Problem

- An integer p is **prime** if $p > 1$ and all positive numbers other than 1 and p itself cannot divide it.
- **PRIMES** asks if an integer N is a prime number.
- Dividing N by $2, 3, \ldots, \sqrt{N}$ is not efficient.
 - The length of N is only $\log N$, but $\sqrt{N} = 2^{0.5 \log N}$.
- A polynomial-time algorithm for **PRIMES** was not found until 2002 by Agrawal, Kayal, and Saxena!
- We will focus on efficient “probabilistic” algorithms for **PRIMES** (used in Mathematica, e.g.).

```
1: if $n = a^b$ for some $a, b > 1$ then
2:   return “composite”;
3: end if
4: for $r = 2, 3, \ldots, n - 1$ do
5:   if gcd($n, r$) > 1 then
6:     return “composite”;
7:   end if
8:   if $r$ is a prime then
9:     Let $q$ be the largest prime factor of $r - 1$;
10:    if $q \geq 4\sqrt{\log n}$ and $n^{(r-1)/q} \neq 1 \mod r$ then
11:       break; \{Exit the for-loop.\}
12:   end if
13: end if
14: end for\{r - 1 has a prime factor $q \geq 4\sqrt{\log n}.$\}
15: for $a = 1, 2, \ldots, 2\sqrt{\log n}$ do
16:   if $(x - a)^n \not\equiv (x^n - a) \mod (x^n - 1)$ in $Z_n[x]$ then
17:     return “composite”;
18:   end if
19: end for
20: return “prime”; \{The only place with “prime” output.\}
```

DP

- DP \equiv NP \cap coNP is the class of problems that have succinct certificates and succinct disqualifications.
 - Each “yes” instance has a succinct certificate.
 - Each “no” instance has a succinct disqualification.
 - No instances have both.
- $P \subseteq$ DP.
- We will see that **PRIMES** \in DP.
 - In fact, **PRIMES** \in P as mentioned earlier.

Primitive Roots in Finite Fields

Theorem 47 (Lucas and Lehmer (1927)) \(^a\) A number $p > 1$ is prime if and only if there is a number $1 < r < p$ (called the **primitive root** or **generator**) such that

1. $r^{p-1} \equiv 1 \mod p$, and
2. $r^{(p-1)/q} \not\equiv 1 \mod p$ for all prime divisors q of $p - 1$.
- We will prove the theorem later.

\(^a\)François Edouard Anatole Lucas (1842–1891); Derrick Henry Lehmer (1905–1991).
Pratt’s Theorem

Theorem 48 (Pratt (1975)) PRIMES $\in NP \cap \text{coNP}$.

- PRIMES is in coNP because a succinct disqualification is a divisor.
- Suppose p is a prime.
- p’s certificate includes the r in Theorem 47 (p. 346).
- Use recursive doubling to check if $r^{p-1} = 1 \mod p$ in time polynomial in the length of the input, $\log_2 p$.
- We also need all prime divisors of $p-1$: q_1, q_2, \ldots, q_k.
- Checking $r^{(p-1)/q_i} \neq 1 \mod p$ is also easy.

The Succinctness of the Certificate

Lemma 49 The length of $C(p)$ is at most quadratic at $5 \log_2^2 p$.

- This claim holds when $p = 2$ or $p = 3$.
- In general, $p-1$ has $k < \log_2 p$ prime divisors $q_1 = 2, q_2, \ldots, q_k$.
- $C(p)$ requires: 2 parentheses and $2k < 2\log_2 p$ separators (length at most $2\log_2 p$ long), r (length at most $\log_2 p$), $q_1 = 2$ and its certificate 1 (length at most 5 bits), the q_i’s (length at most $2\log_2 p$), and the $C(q_i)$s.

The Proof (concluded)

- Checking q_1, q_2, \ldots, q_k are all the divisors of $p-1$ is easy.
- We still need certificates for the primality of the q_i’s.
- The complete certificate is recursive and tree-like:
 $$C(p) = (r; q_1, C(q_1), q_2, C(q_2), \ldots, q_k, C(q_k))$$
- $C(p)$ can also be checked in polynomial time.
- We next prove that $C(p)$ is succinct.

The Proof (concluded)

- $C(p)$ is succinct because
 $$|C(p)| \leq 5 \log_2 p + 5 + 5 \sum_{i=2}^{k} \log_2^2 q_i$$
 $$\leq 5 \log_2 p + 5 + 5 \left(\sum_{i=2}^{k} \log_2 q_i \right)^2$$
 $$\leq 5 \log_2 p + 5 + 5 \log_2^2 \frac{p-1}{2}$$
 $$< 5 \log_2 p + 5 + 5 \log_2 p - 5 \log_2^2 p$$
 $$= 5 \log_2^2 p + 5 \log_2 p \leq 5 \log_2^2 p$$
 for $p \geq 4$.
Basic Modular Arithmetics

- Let \(m, n \in \mathbb{Z}^+ \).
- \(m \mid n \) means \(m \) divides \(n \) and \(m \) is \(n \)'s divisor.
- We call the numbers 0, 1, \ldots, \(n-1 \) the residue modulo \(n \).
- The greatest common divisor of \(m \) and \(n \) is denoted \(\gcd(m, n) \).
- The \(r \) in Theorem 47 (p. 346) is a primitive root of \(p \).
- We now prove the existence of primitive roots and then Theorem 47.

Euler’s Totient or Phi Function

- Let
 \[
 \Phi(n) = \{m : 1 \leq m < n, \gcd(m, n) = 1\}
 \]
 be the set of all positive integers less than \(n \) that are prime to \(n \) (\(\mathbb{Z}_n^* \) is a more popular notation).
 - \(\Phi(12) = \{1, 5, 7, 11\} \).
- Define Euler’s function of \(n \) to be \(\phi(n) = |\Phi(n)| \).
- \(\phi(p) = p - 1 \) for prime \(p \), and \(\phi(1) = 1 \) by convention.
- Euler’s function is not expected to be easy to compute without knowing \(n \)'s factorization.

Two Properties of Euler’s Function

The inclusion-exclusion principle can be used to prove the following.

Lemma 50 \(\phi(n) = n \prod_{p \mid n} \left(1 - \frac{1}{p}\right) \).

- If \(n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t} \) is the prime factorization of \(n \), then
 \[
 \phi(n) = n \prod_{i=1}^{t} \left(1 - \frac{1}{p_i}\right) .
 \]

Corollary 51 \(\phi(mn) = \phi(m) \phi(n) \) if \(\gcd(m, n) = 1 \).

\(^a\)Leonhard Euler (1707–1783).
A Key Lemma

Lemma 52 \(\sum_{m \mid n} \phi(m) = n. \)

- Let \(\prod_{i=1}^{\ell} p_i^{k_i} \) be the prime factorization of \(n \) and consider
 \[
 \prod_{i=1}^{\ell} [\phi(1) + \phi(p_i) + \cdots + \phi(p_i^{k_i})].
 \tag{4}
 \]

- Equation (4) equals \(n \) because \(\phi(p_i^{k_i}) = p_i^{k_i} - p_i^{k_i-1} \) by Lemma 50.
- Expand Eq. (4) to yield \(\sum_{k_1 \leq k_1', \ldots, k_\ell \leq k_\ell} \prod_{i=1}^{\ell} \phi(p_i^{k_i'}). \)

The Proof (concluded)

- By Corollary 51 (p. 354),
 \[
 \prod_{i=1}^{\ell} \phi(p_i^{k_i'}) = \phi \left(\prod_{i=1}^{\ell} p_i^{k_i'} \right).
 \]
- Each \(\prod_{i=1}^{\ell} p_i^{k_i'} \) is a unique divisor of \(n = \prod_{i=1}^{\ell} p_i^{k_i} \).
- Equation (4) becomes
 \[
 \sum_{m \mid n} \phi(m).
 \]
The Chinese Remainder Theorem

- Let \(n = n_1 n_2 \cdots n_k \), where \(n_i \) are pairwise relatively prime.
- For any integers \(a_1, a_2, \ldots, a_k \), the set of simultaneous equations
 \[
 x = a_1 \mod n_1, \\
 x = a_2 \mod n_2, \\
 \vdots \\
 x = a_k \mod n_k,
 \]
 has a unique solution modulo \(n \) for the unknown \(x \).

Fermat’s “Little” Theorem

Lemma 53 For all \(0 < a < p \), \(a^{p-1} = 1 \mod p \).

- Consider \(a\Phi(p) = \{am \mod p : m \in \Phi(p)\} \).
- \(a\Phi(p) = \Phi(p) \).
 - Suppose \(am = am' \mod p \) for \(m > m' \), where \(m, m' \in \Phi(p) \).
 - That means \(a(m - m') = 0 \mod p \), and \(p \) divides \(a \) or \(m - m' \), which is impossible.
- Hence \((p-1)! = a^{p-1}(p-1)! \mod p \).
- Finally, \(a^{p-1} = 1 \mod p \) because \(p \nmid (p-1)! \).

The Fermat-Euler Theorem

Corollary 54 For all \(a \in \Phi(n) \), \(a^{\phi(n)} = 1 \mod n \).

- As \(12 = 2^2 \times 3 \),
 \[\phi(12) = 12 \times \left(1 - \frac{1}{2} \right) \left(1 - \frac{1}{3} \right) = 4 \]
- In fact, \(\Phi(12) = \{1, 5, 7, 11\} \).
- For example,
 \(5^4 = 625 = 1 \mod 12 \).

Exponents

- The exponent of \(m \in \Phi(p) \) is the least \(k \in \mathbb{Z}^+ \) such that \(m^k = 1 \mod p \).
- Every residue \(s \in \Phi(p) \) has an exponent.
 - \(1, s, s^2, s^3, \ldots \) eventually repeats itself, say \(s^i = s^j \mod p \), which means \(s^{j-i} = 1 \mod p \).
- If the exponent of \(m \) is \(k \) and \(m^\ell = 1 \mod p \), then \(k | \ell \).
 - Otherwise, \(\ell = qk + a \) for \(0 < a < k \), and \(m^\ell = m^a = 1 \mod p \), a contradiction.

Lemma 55 Any nonzero polynomial of degree \(k \) has at most \(k \) distinct roots modulo \(p \).
Exponents and Primitive Roots

- From Fermat’s “little” theorem, all exponents divide $p - 1$.
- A primitive root of p is thus a number with exponent $p - 1$.
- Let $R(k)$ denote the total number of residues in $\Phi(p)$ that have exponent k.
- We already knew that $R(k) = 0$ for $k \nmid (p - 1)$.
- So $\sum_{k|(p-1)} R(k) = p - 1$ as every number has an exponent.

Size of $R(k)$

- Any $a \in \Phi(p)$ of exponent k satisfies $x^k = 1 \mod p$.
- Hence there are at most k residues of exponent k, i.e., $R(k) \leq k$, by Lemma 55 on p. 362.
- Let s be a residue of exponent k.
- $1, s, s^2, \ldots, s^{k-1}$ are all distinct modulo p.
 - Otherwise, $s^i = s^j \mod p$ with $i < j$ and s is of exponent $j - i < k$, a contradiction.
- As all these k distinct numbers satisfy $x^k = 1 \mod p$, they are all the solutions of $x^k = 1 \mod p$.
- But do all of them have exponent k (i.e., $R(k) = k$)?

Size of $R(k)$ (continued)

- And if not (i.e., $R(k) < k$), how many of them do?
- Suppose $\ell < k$ and $\ell \not\in \Phi(k)$ with $\gcd(\ell, k) = d > 1$.
- Then \((s^{\ell})^{k/d} = 1 \mod p\).
- Therefore, s^ℓ has exponent at most k/d, which is less than k.
- We conclude that $R(k) \leq \phi(k)$.

Size of $R(k)$ (concluded)

- Because all $p - 1$ residues have an exponent, $p - 1 = \sum_{k|(p-1)} R(k) \leq \sum_{k|(p-1)} \phi(k) = p - 1$
 - by Lemma 51 on p. 354.
- Hence $R(k) = \begin{cases} \phi(k) & \text{when } k|(p-1) \\ 0 & \text{otherwise} \end{cases}$
- In particular, $R(p-1) = \phi(p-1) > 0$, and p has at least one primitive root.
- This proves one direction of Theorem 47 (p. 346).