Comments on Lower-Bound Proofs

• They are usually difficult.
 – Worthy of a Ph.D. degree.

• A lower bound that matches a known upper bound (given by an efficient algorithm) shows that the algorithm is optimal.
 – The simple $O(n^2)$ algorithm for PALINDROME is optimal.

• This happens rarely and is model dependent.
 – Searching, sorting, PALINDROME, matrix-vector multiplication, etc.
Decidability and Recursive Languages

- Let $L \subseteq (\Sigma - \{\square\})^*$ be a **language**, i.e., a set of strings of symbols with a finite length.
 - For example, $\{0, 01, 10, 210, 1010, \ldots\}$.

- Let M be a TM such that for any string x:
 - If $x \in L$, then $M(x) = \text{“yes.”}$
 - If $x \notin L$, then $M(x) = \text{“no.”}$

- We say M **decides** L.

- If L is decided by some TM, then L is **recursive**.
 - Palindromes over $\{0, 1\}^*$ are recursive.
Acceptability and Recursively Enumerable Languages

• Let \(L \subseteq (\Sigma - \{|\}|)^* \) be a language.

• Let \(M \) be a TM such that for any string \(x \):
 – If \(x \in L \), then \(M(x) = "yes." \)
 – If \(x \notin L \), then \(M(x) = \uparrow \).

• We say \(M \) accepts \(L \).
Acceptability and Recursively Enumerable Languages (concluded)

- If L is accepted by some TM, then L is a **recursively enumerable language**.

 - A recursively enumerable language can be generated by a TM, thus the name.

 - That is, there is an algorithm such that for every $x \in L$, it will be printed out eventually.
Recursive and Recursively Enumerable Languages

Proposition 2 If \(L \) is recursive, then it is recursively enumerable.

- We need to design a TM that accepts \(L \).
- Let TM \(M \) decide \(L \).
- We next modify \(M \)'s program to obtain \(M' \) that accepts \(L \).
- \(M' \) is identical to \(M \) except that when \(M \) is about to halt with a “no” state, \(M' \) goes into an infinite loop.
- \(M' \) accepts \(L \).
Turing-Computable Functions

• Let \(f : (\Sigma - \{\square\})^* \rightarrow \Sigma^* \).

 – Optimization problems, root finding problems, etc.

• Let \(M \) be a TM with alphabet \(\Sigma \).

• \(M \) computes \(f \) if for any string \(x \in (\Sigma - \{\square\})^* \),
 \[
 M(x) = f(x) .
 \]

• We call \(f \) a recursive function\(^a\) if such an \(M \) exists.

\(^a\)Gödel (1931).
Church’s Thesis or the Church-Turing Thesis

• What is computable is Turing-computable; TMs are algorithms (Kleene 1953).

• Many other computation models have been proposed.
 – Recursive function (Gödel), λ calculus (Church), formal language (Post), assembly language-like RAM (Shepherdson & Sturgis), boolean circuits (Shannon), extensions of the Turing machine (more strings, two-dimensional strings, and so on), etc.

• All have been proved to be equivalent.

• No “intuitively computable” problems have been shown not to be Turing-computable (yet).
Extended Church’s Thesis

- All “reasonably succinct encodings” of problems are *polynomially related*.
 - Representations of a graph as an adjacency matrix and as a linked list are both succinct.
 - The *unary* representation of numbers is not succinct.
 - The *binary* representation of numbers is succinct.
 * 1001 vs. 11111111.

- All numbers for TMs will be binary from now on.
Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s)$.
- K, Σ, s are as before.
- $\delta : K \times \Sigma^k \rightarrow (K \cup \{h, \text{“yes”}, \text{“no”}\}) \times (\Sigma \times \{-, \rightarrow, -, \}^k$.
- All strings start with a \rhd.
- The first string contains the input.
- Decidability and acceptability are the same as before.
- When TMs compute functions, the output is on the last (kth) string.
A 2-String TM

\[\delta \]

\[\langle 10011000011100111001110 \rangle \]

\[\langle 11110000 \rangle \]
PALINDROME Revisited

- A 2-string TM can decide PALINDROME in \(O(n) \) steps.
 - It copies the input to the second string.
 - The cursor of the first string is positioned at the first symbol of the input.
 - The cursor of the second string is positioned at the last symbol of the input.
 - The two cursors are then moved in opposite directions until the ends are reached.
 - The machine accepts if and only if the symbols under the two cursors are identical at all steps.
Configurations and Yielding

• The concept of configuration and yielding is the same as before except that a configuration is a \((2k + 1)\)-triple

\[(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k).\]

 – \(w_iu_i\) is the \(i\)th string.
 – The \(i\)th cursor is reading the last symbol of \(w_i\).
 – Recall that \(\rhd\) is each \(w_i\)’s first symbol.

• The \(k\)-string TM’s initial configuration is

\[(s, \rhd, x, \rhd, \epsilon, \rhd, \epsilon, \ldots, \rhd, \epsilon).\]
Time Complexity

• The multistring TM is the basis of our notion of the time expended by TM computations.

• If for a k-string TM M and input x, the TM halts after t steps, then the time required by M on input x is t.

• If $M(x) = \uparrow$, then the time required by M on x is ∞.

• Machine M operates within time $f(n)$ for $f : \mathbb{N} \rightarrow \mathbb{N}$ if for any input string x, the time required by M on x is at most $f(|x|)$.

 – $|x|$ is the length of string x.
 – Function $f(n)$ is a time bound for M.
Time Complexity Classes

- Suppose language \(L \subseteq (\Sigma - \{\square\})^* \) is decided by a multistring TM operating in time \(f(n) \).
- We say \(L \in \text{TIME}(f(n)) \).
- \(\text{TIME}(f(n)) \) is the set of languages decided by TMs with multiple strings operating within time bound \(f(n) \).
- \(\text{TIME}(f(n)) \) is a complexity class.
 - PALINDROME is in \(\text{TIME}(f(n)) \), where \(f(n) = O(n) \).

\(^a\)Hartmanis and Stearns (1965), Hartmanis, Lewis, and Stearns (1965).
The Simulation Technique

Theorem 3 Given any k-string M operating within time $f(n)$, there exists a (single-string) M' operating within time $O(f(n)^2)$ such that $M(x) = M'(x)$ for any input x.

- The single string of M' implements the k strings of M.
- Represent configuration $(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k)$ of M by configuration

 $$(q, w'_1u_1 \triangleleft w'_2u_2 \triangleleft \cdots \triangleleft w'_ku_k \triangleleft \triangleleft)$$

 of M'.
 - \triangleleft is a special delimiter.
 - w'_i is w_i with the first and last symbols “primed.”
The Proof (continued)

• The initial configuration of \(M' \) is

\[
(s, \overrightarrow{\prime} \overrightarrow{\prime} x \overleftarrow{\prime} \overleftarrow{\prime} \overleftarrow{\prime} \overrightarrow{\prime} \overleftarrow{\prime} \overrightarrow{\prime} \overleftarrow{\prime} \overrightarrow{\prime})
\]

\(k - 1 \) pairs

• To simulate each move of \(M \):
 - \(M' \) scans the string to pick up the \(k \) symbols under the cursors.
 - The states of \(M' \) must include \(K \times \Sigma^k \) to remember them.
 - The transition functions of \(M' \) must also reflect it.
 - \(M' \) then changes the string to reflect the overwriting of symbols and cursor movements of \(M \).
The Proof (continued)

- It is possible that some strings of M need to be lengthened.
 - The linear-time algorithm on p. 36 can be used for each such string.

- The simulation continues until M halts.

- M' erases all strings of M except the last one.

- Since M halts within time $f(|x|)$, none of its strings ever becomes longer than $f(|x|)$.

- The length of the string of M' at any time is $O(kf(|x|))$.

aWe tacitly assume $f(n) \geq n$.
<table>
<thead>
<tr>
<th>string 1</th>
<th>string 2</th>
<th>string 3</th>
<th>string 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>string 1</td>
<td>string 2</td>
<td>string 3</td>
<td>string 4</td>
</tr>
</tbody>
</table>
The Proof (concluded)

- Simulating each step of M takes, per string of M, $O(kf(|x|))$ steps.
 - $O(f(|x|))$ steps to collect information.
 - $O(kf(|x|))$ steps to write and, if needed, to lengthen the string.

- M' takes $O(k^2f(|x|))$ steps to simulate each step of M.

- As there are $f(|x|)$ steps of M to simulate, M' operates within time $O(k^2f(|x|)^2)$.
Linear Speedupa

Theorem 4 Let $L \in \text{TIME}(f(n))$. Then for any $\epsilon > 0$, $L \in \text{TIME}(f'(n))$, where $f'(n) = \epsilon f(n) + n + 2$.

aHartmanis and Stearns (1965).
Implications of the Speedup Theorem

• State size can be traded for speed.
 – $m^k \cdot |\Sigma|^{3mk}$-fold increase to gain a speedup of $O(m)$.

• If $f(n) = cn$ with $c > 1$, then c can be made arbitrarily close to 1.

• If $f(n)$ is superlinear, say $f(n) = 14n^2 + 31n$, then the constant in the leading term (14 in this example) can be made arbitrarily small.
 – *Arbitrary* linear speedup can be achieved.
 – This justifies the asymptotic big-O notation.
P

- By the linear speedup theorem, any polynomial time bound can be represented by its leading term \(n^k \) for some \(k \geq 1 \).

- If \(L \) is a polynomially decidable language, it is in \(\text{TIME}(n^k) \) for some \(k \in \mathbb{N} \).
 - Clearly, \(\text{TIME}(n^k) \subseteq \text{TIME}(n^{k+1}) \).

- The union of all polynomially decidable languages is denoted by \(P \):
 \[
P = \bigcup_{k>0} \text{TIME}(n^k).
 \]

- Problems in \(P \) can be efficiently solved.
Charging for Space

• We do not charge the space used only for input and output.

• Let $k > 2$ be an integer.

• A k-string Turing machine with input and output is a k-string TM that satisfies the following conditions.
 – The input string is read-only.
 – The last string, the output string, is write-only.
 – So its cursor never moves to the left.
 – The cursor of the input string does not wander off into the \sqsubset's.
Space Complexity

- Consider a \(k \)-string TM \(M \) with input \(x \).
- Assume \(\sqcup \) is never written over by a non-\(\sqcup \) symbol.
- If \(M \) halts in configuration
 \((H, w_1, u_1, w_2, u_2, \ldots, w_k, u_k) \), then the space required by \(M \) on input \(x \) is
 \(\sum_{i=1}^{k} |w_i u_i| \).
- If \(M \) is a TM with input and output, then the space required by \(M \) on input \(x \) is
 \(\sum_{i=2}^{k-1} |w_i u_i| \).
- Machine \(M \) operates within space bound \(f(n) \) for
 \(f : \mathbb{N} \to \mathbb{N} \) if for any input \(x \), the space required by \(M \) on \(x \) is at most \(f(|x|) \).
Space Complexity Classes

• Let L be a language.

• Then

$$L \in \text{SPACE}(f(n))$$

if there is a TM with input and output that decides L and operates within space bound $f(n)$.

• SPACE($f(n)$) is a set of languages.
 – PALINDROME \in SPACE($\log n$): Keep 3 pointers.

• As in the linear speedup theorem (Theorem 4), constant coefficients do not matter.
Nondeterminisma

- A nondeterministic Turing machine (NTM) is a quadruple $N = (K, \Sigma, \Delta, s)$.

- K, Σ, s are as before.

- $\Delta \subseteq K \times \Sigma \rightarrow (K \cup \{h, "yes", "no"\}) \times \Sigma \times \{←, →, −\}$ is a relation, not a function.
 - For each state-symbol combination, there may be more than one next steps—or none at all.

- A configuration yields another configuration in one step if there exists a rule in Δ that makes this happen.

aRabin and Scott (1959).
Computation Tree and Computation Path

\[S \]

\[h \]

\[\text{“no”} \]

\[h \]

\[\text{“yes”} \]

\[\text{“yes”} \]
Decidability under Nondeterminism

- Let L be a language and N be an NTM.

- N decides L if for any $x \in \Sigma^*$, $x \in L$ if and only if there is a sequence of valid configurations that ends in “yes.”
 - It is not required that the NTM halts in all computation paths.
 - If $x \notin L$, no nondeterministic choices should lead to a “yes” state.

- What is key is the algorithm’s overall behavior not whether it gives a correct answer for each particular run.

- Determinism is a special case of nondeterminism.
An Example

- Let L be the set of logical conclusions of a set of axioms.
 - Predicates not in L may be false under the axioms.
 - They may also be independent of the axioms, meaning they can be assumed true or false without contradicting the axioms.
An Example (concluded)

• Let ϕ be a predicate whose validity we would like to prove.

• Consider the nondeterministic algorithm:
 1: $b := \text{true}$;
 2: while the input predicate $\phi \neq b$ do
 3: Generate a logical conclusion of b by applying some of the axioms; {Nondeterministic choice.}
 4: Assign this conclusion to b;
 5: end while
 6: “yes”;

• This algorithm decides L.
Complementing a TM’s Halting States

• Let M decide L, and M' be M after “yes” \leftrightarrow “no”.

• If M is a (deterministic) TM, then M' decides \overline{L}.

• But if M is an NTM, then M' may not decide \overline{L}.

 – It is possible that both M and M' accept x (see next page).

 – When this happens, M and M' accept languages that are not complements of each other.
\[
\begin{array}{c}
\text{\(x\)} \\
\begin{array}{c}
\begin{array}{c}
\text{\(h\)} \\
\text{\"no\"}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{\(h\)} \\
\text{\"yes\"}
\end{array}
\end{array}
\end{array}
\end{array}
\rightarrow
\begin{array}{c}
\text{\(x\)} \\
\begin{array}{c}
\begin{array}{c}
\text{\(h\)} \\
\text{\"yes\"
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{\(h\)} \\
\text{\"no\"}
\end{array}
\end{array}
\end{array}
\end{array}
A Nondeterministic Algorithm for Satisfiability

\(\phi \) is a boolean formula with \(n \) variables.

1: \textbf{for} \(i = 1, 2, \ldots, n \) \textbf{do}
2: \hspace{1em} Guess \(x_i \in \{0, 1\} \); \{Nondeterministic choice.\}
3: \textbf{end for}
4: \{Verification:\}
5: \textbf{if} \(\phi(x_1, x_2, \ldots, x_n) = 1 \) \textbf{then}
6: \hspace{1em} “yes”;
7: \textbf{else}
8: \hspace{1em} “no”;
9: \textbf{end if}
The Computation Tree for Satisfiability

\[x_1 = 0 \]
\[x_2 = 1 \]
\[x_3 = 1 \]
\[x_4 = 0 \]
\[x_5 = 0 \]
\[x_6 = 1 \]
\[x_7 = 1 \]
\[x_8 = 0 \]
Analysis

• The algorithm decides language \(\{ \phi : \phi \text{ is satisfiable} \} \).
 – The computation tree is a complete binary tree of depth \(n \).
 – Every computation path corresponds to a particular truth assignment out of \(2^n \).
 – \(\phi \) is satisfiable if and only if there is a computation path (truth assignment) that results in “yes.”

• General paradigm: Guess a “proof” and then verify it.