A Corollary
The construction in the above proof shows the following.

Corollary 31 If L € TIME(T (n)), then a circuit with
O(T?(n)) gates can decide if x € L for |x|=n.

MONOTONE CIRCUIT VALUE Is P-Complete

Despite their limitations, MONOTONE CIRCUIT VALUE is as
hard as CIRCUIT VALUE.

Corollary 32 MONOTONE CIRCUIT VALUE is P-complete.

e Given any general circuit, we can “move the —’s

downwards” using de Morgan’s laws. (Think!)
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MONOTONE CIRCUIT VALUE

e A monotone boolean circuit’s output cannot change from
true to false when one input changes from false to true.

e Monotone boolean circuits are hence less expressive than
general circuits as they can compute only monotone
boolean functions.

— Monotone circuits do not contain — gates.

e MONOTONE CIRCUIT VALUE is CIRCUIT VALUE applied

to monotone circuits.
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Cook’s Theorem: the First NP-Complete Problem
Theorem 33 (Cook (1971)) sAT is NP-complete.

e saT € NP (p. 80).

e CIRCUIT SAT reduces to SAT (p. 214).

e Now we only need to show that all languages in NP can
be reduced to CIRCUIT SAT.
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The Computation Tableau for NTMs and R(x)
The Proof (continued)

Cc, C,C
Let single-string NTM M decide L € NP in time n*. > a b C d C f |_] |l e

T Y s e 2 2 2 2 2

Assume M has exactly two nondeterministic choices at

each step: choices 0 and 1.

For each input z, we construct circuit R(z) such that L

z € L if and only if R(z) is satisfiable. W

e A sequence of nondeterministic choices is a bit string > |_|

& Ml
B:(Co,cl,...,C|$‘k_1)€{0,1}|$‘. (L] 3 £3 £7 £3 2

Once B is fixed, the computation is deterministic. ‘ TTTTTTTTIT T I T ITTTTTT]
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The Proof (continued)

e Each choice of B results in a deterministic
polynomial-time computation, hence a table like the one
on p. 239.

The Proof (concluded)

e The overall circuit R(z) (on p. 246) is satisfiable if there

is a truth assignment B such that the computation table

e Each circuit C' at time % has an extra binary input ¢
corresponding to the nondeterministic choice:

C(Ti-1,j-1,Ti-1,5, Ti—1,j+1,¢) = Tj;. .
accepts.

LLLLLLLrrrlse e This happens if and only if M accepts z, i.e., z € L.
C
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Parsimonious Reductions

e The reduction R in Cook’s theorem (p. 243) is such that

— Each satisfying truth assignment for circuit R(x)

corresponds to an accepting computation path for

e The number of satisfying truth assignments for R(z)
equals that of M(x)’s accepting computation paths.

e This kind of reduction is called parsimonious.

e We will loosen the requirement for parsimonious
reduction: It runs in deterministic polynomial time.

An Alternative Characterization of NP

Proposition 34 (Edmonds (1965)) Let L C ¥* be a
language. Then L € NP if and only if there is a polynomially
decidable and polynomially balanced relation R such that

L=A{z:3y(z,y) € R}.
e Suppose such an R exists.

e L can be decided by this NTM:
— On input z, the NTM guesses a y of length < |z |F
and tests if (z,y) € R in polynomial time.

— It returns “yes” if the test is positive.
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Two Notions
e Let R C ¥* x X* be a binary relation on strings.

e R is called polynomially decidable if

{z;y: (z,y) € R}
isin P.
e R is said to be polynomially balanced if (z,y) € R
implies |y| < |z |* for some k > 1.

The Proof (concluded)
e Now suppose L € NP.
e NTM N decides L in time |z |¥.

e Define R as follows: (z,y) € R if and only if y is the
encoding of an accepting computation of N on input x.

e (Clearly R is polynomially balanced because N is
polynomially bounded.

e R is polynomially decidable because it can be efficiently
verified by checking with N’s transition function.

e Finally L = {z: (z,y) € R for some y} because N
decides L.

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 249

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 251




Comments

e Any “yes” instance z of an NP problem has at least one
. . . . 3SAT
succinct certificate or polynomial witness y.

_ + . .
e “No” instances have none. e k-SAT, where k € Z™, is the special case of SAT.

e Certificates are short and easy to verify. e The formula is in CNF and all clauses have ezactly k

o . literals (repetition of literals is allowed).
— An alleged satisfying truth assignment for SAT; an

alleged Hamiltonian path for HAMILTONIAN PATH. e For example,

e Certificates may be hard to generate (otherwise, NP (z1 Va2 V-z3) A (21 VayV-ze) A(z V -z V—rs).
equals P), but verification must be easy.

e NP is the class of easy-to-verify (in P) problems.
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You Have an NP-Complete Problem (for Your Thesis)

e From Propositions 28 (p. 223) and Proposition 29 3sAT Is NP-Complete

(p. 225), it is the least likely to be in P.

Recall Cook’s Theorem (p. 243) and the reduction of

e Your options are: CIRCUIT SAT to SAT (p. 214).

— Approximations. The resulting CNF has at most 3 literals for each clause.

— Special cases. — This shows that 3SAT where each clause has at most

— Average performance. 3 literals is NP-complete.

Finally, duplicate one literal once or twice to make it a
3SAT formula.

— Randomized algorithms.
— Exponential-time algorithms that work well in
practice. e Note: The overall reduction remains parsimonious.

— “Heuristics” (and pray).

©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 253 ©2003 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 255



Another Variant of 3SAT

Proposition 35 3SAT is NP-complete for expressions in
which each variable is restricted to appear at most three
times, and each literal at most twice. (3SAT here requires
only that each clause has at most & literals.)

e Consider a general 3SAT expression in which x appears k&

times.

e Replace the first occurrence of x by x1, the second by
T2, and so on, where z1,xo,... ,Tr are k new variables.
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The Proof (concluded)
o Add (—z1 Vx2) A(—z2 Vas) A+ A(—xk V1) to the
expression.

— This is logically equivalent to
1 => Ty = = T = I1.

— Each clause may have fewer than 3 literals.

e The resulting equivalent expression satisfies the
condition for z.
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2SAT and Graphs

Let ¢ be an instance of 2SAT: Each clause has 2 literals.

Define graph G(¢) as follows:

— The nodes are the variables and their negations.

— Add edges (—a, 8) and (—8,a) to G(¢) f aV B is a
clause in ¢.
x For example, if x V -y € ¢, add (—-z, —y) and (y, z).
* Two edges are added for each clause.

Think of the edges as —a =  and =8 = a.

b is reachable from a iff —a is reachable from —b.

Paths in G(¢) are valid implications.
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[llustration: Directed Graph for
(21 V 22) A (21 V —23) A (m21 V 22) A (22 V 23)

Xy Xy
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Properties of G(¢)

Theorem 36 ¢ is unsatisfiable if and only if there is a
variable x such that there are paths from x to —x and from

-z to z in G(J).

We skip the proof in the text.

Generalized 2SAT: MAX2SAT
e Consider a 2SAT expression.
e Let K € N.

® MAX2SAT is the problem of whether there is a truth
assignment that satisfies at least K of the clauses.

® MAX2SAT becomes 2SAT when K equals the number of
clauses.

® MAX2SAT is an optimization problem.

o MAX2SAT € NP: Guess a truth assignment and verify
the count.
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28AT Isin NLC P
e NL is a subset of P (p. 185).
e By Corollary 26 on p. 202, coNL equals NL.

e We need to show only that recognizing unsatisfiable
expressions is in NL.

e In nondeterministic logarithmic space, we can test the
conditions of Theorem 36 by guessing a variable z and
testing if —x is reachable from z and if —x can reach x.

— See the algorithm for REACHABILITY (p. 92).
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MAX2SAT Is NP-Complete?
e Consider the following 10 clauses:
(@) A (y) A (2) A (w)
(mzV-y)A(—yV—z)A(-zV —x)
(zV-w)A(yV-w)A(zV-w)
e Let the 2sAT formula 7(z,y, z, w) represent the
conjunction of these clauses.
e How many clauses can we satisfy?

e The clauses are symmetric with respect to z, y, and z.

a2Garey, Johnson, and Stockmeyer (1976).
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The Proof (continued) The Proof (concluded)
All of z,y,z are true: By setting w to true, we can satisfy e We now show that K clauses of R(¢) can be satisfied if
440+ 3 =7 clauses. and only if ¢ is satisfiable.
Two of z,y, z are true: By setting w to true, we can e Suppose 7m clauses of R(¢) can be satisfied.
satisfy 3 + 2+ 2 =7 clauses. — 7 clauses must be satisfied in each group because
One of z,y, z is true: By setting w to false, we can satisfy each group can have at most 7 clauses satisfied.
1+ 3+ 3 =7 clauses. — Hence all clauses of ¢ must be satisfied.
None of z,y, z is true: By setting w to false, we can e Suppose all clauses of ¢ are satisfied.
satisfy 0 + 3 + 3 = 6 clauses, whereas by setting w to — Each group can set its w; appropriately to have 7
true, we can satisfy only 14 3 4 0 = 4 clauses. clauses satisfied.
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The Proof (continued)

e Any truth assignment that satisfies £ V y V z can be NAESAT
extended to satisfy 7 of the 10 clauses and no more.

_ ] e The NAESAT (for “not-all-equal” SAT) is like 3SAT.
e Any other truth assignment can be extended to satisfy

only 6 of them. e But we require additionally that there be a satisfying

. truth assignment under which no clauses have the three
e The reduction from 3SAT ¢ to MAX2SAT R(¢):

— For each clause C; = (aV 8V 7) of ¢, add group
’I"(O[, ﬁa Y5 wi) to R(¢)
— If ¢ has m clauses, then R(¢$) has 10m clauses.

literals equal in truth value.

— Each clause must have one literal assigned true and
one literal assigned false.

e Set K = Tm.
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The Proof (concluded)

NAESAT Is NP-Complete?
e Suppose there is a truth assignment that satisfies the

e Recall the reduction of CIRCUIT SAT to SAT on p. 214.

circuit.
e It produced a CNF ¢ in which each clause has at most 3 — Then there is a truth assignment 7" that satisfies
literals. every clause of ¢.

Extend T by adding T'(z) = false to obtain 7”.
T’ satisfies ¢(z).

e Add the same variable z to all clauses with fewer than 3
literals to make it a 3SAT formula.

e Goal: The new formula ¢(z) is NAE-satisfiable if and — So in no clauses are all three literals false under 7”.

ounly if the original circuit is satisfiable.

Under T”, in no clauses are all three literals true.

aKarp (1972). * Review the detailed construction on p. 215 and
p. 216.
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The Proof (continued) Undirected Graphs
e Suppose T' NAE-satisfies ¢(z). e An undirected graph G = (V, E) has a finite set of
— T also NAE-satisfies ¢(2). nodes, V, and a set of undirected edges, E.
— Under T or T, variable z takes the value false. e It is like a directed graph except that the edges have no
— This truth assignment must still satisfy all clauses of directions and there are no self-loops.
9. e We use [4,7] to denote the fact that there is an edge
— So it satisfies the original circuit. between node ¢ and node j.
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Independent Sets Reduction from 3SAT to INDEPENDENT SET

Let G = (V, E) be an undirected graph. e Let ¢ be an instance of 3SAT with m clauses.

e ICV. e We will construct graph G (with constraints as said)
with K = m such that ¢ is satisfiable if and only if G
has an independent set of size K.

e [ is independent if whenever i, j € I, there is no edge
between ¢ and j.

e The INDEPENDENT SET problem: Given an undirected e There is a triangle for each clause with the literals as the
graph and a goal K, is there an independent set of size nodes.
K? e Add additional edges between z and —z for every
— Many applications. variable x.
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A Sample Construction
INDEPENDENT SET Is NP-Complete P

e This problem is in NP: Guess a set of nodes and verify
that it is independent and meets the count.

e If a graph contains a triangle, any independent set can

contain at most one node of the triangle. % ‘ .. ' s

e We consider graphs whose nodes can be partitioned in m

disjoint triangles.
— If the special case is hard, the original problem must
be at least as hard. (z1 Vo2 Va3) A (—z V -z V—z3) A (—zy V2a V zs).
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The Proof (continued)

e Suppose G has an independent set I of size K = m.

— An independent set can contain at most m nodes,
one from each triangle.

— An independent set of size m exists if and only if it
contains exactly one node from each triangle.

— T is consistent because contradictory literals are
connected by an edge, hence not both in I.

— T satisfies ¢ because it has a node from every
triangle, thus satisfying every clause.

— Truth assignment 7" assigns true to those literals in I.
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The Proof (concluded)

e Suppose a satisfying truth assignment 7' exists for ¢.

— Collect one node from each triangle whose literal is
true under 7'.

— The choice is arbitrary if there is more than one true
literal.

— This set of m nodes must be independent by
construction.

* Literals  and —z cannot be both assigned true.

Other INDEPENDENT SET-Related NP-Complete
Problems

Corollary 37 4-DEGREE INDEPENDENT SET is
NP-complete.

Theorem 38 INDEPENDENT SET is NP-complete for planar
graphs.
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CLIQUE and NODE COVER
e We are given an undirected graph G and a goal K.

e CLIQUE asks if there is a set of K nodes that form a
clique, which have all possible edges between them.

e NODE COVER asks if there is a set C with K or fewer
nodes such that each edge of G has at least one of its
endpoints in C.
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CLIQUE Is NP-Complete

Corollary 39 CLIQUE is NP-complete.
MIN CUT and MAX CUT

e Let G be the complement of G, where [z,y] € G if and A _ _ . _ .
only if [z,y] & G. e A cut in an undirected graph G = (V, E) is a partition

of the nodes into two nonempty sets S and V — S.

e [ is a clique in G < I is an independent set in G.
e The size of a cut (S,V — §) is the number of edges

between S and V — S.
e MIN CUT € P by the maxflow algorithm.

e MAX CUT asks if there is a cut of size at least K.

— K is part of the input.
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NODE COVER Is NP-Complete

Corollary 40 NODE COVER is NP-complete.

A Cut
e [ is an independent set of G = (V, E) if and only if

V — I is a node cover of G.

=,
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