A Nondeterministic Algorithm for Satisfiability

ϕ is a boolean formula with n variables.

1: for $i = 1, 2, \ldots, n$ do
2: \hspace{1em} Guess $x_i \in \{0, 1\}$; \{Nondeterministic choice.\}
3: end for
4: \{Verification:\}
5: if $\phi(x_1, x_2, \ldots, x_n) = 1$ then
6: \hspace{1em} “yes”;
7: else
8: \hspace{1em} “no”;
9: end if

Analysis

- The algorithm decides language $\{\phi : \phi$ is satisfiable$\}$.
 - The computation tree is a complete binary tree of depth n.
 - Every computation path corresponds to a particular truth assignment out of 2^n.
 - ϕ is satisfiable if and only if there is a computation path (truth assignment) that results in “yes.”
- General paradigm: Guess a “proof” and then verify it.

The Computation Tree for Satisfiability

- We are given n cities $1, 2, \ldots, n$ and integer distances d_{ij} between any two cities i and j.
- Assume $d_{ij} = d_{ji}$ for convenience.
- The traveling salesman problem (TSP) asks for the total distance of the shortest tour of the cities.
- The decision version TSP (TSP) asks if there is a tour with a total distance at most B, where B is an input.
- Both problems are extremely important but equally hard (p. 308 and p. 370).
A Nondeterministic Algorithm for TSP (D)
1: for \(i = 1, 2, \ldots, n \) do
2: \(\text{Guess} \ x_i \in \{1, 2, \ldots, n\}; \) (The \(i \)th city)
3: end for
4: \(x_{n+1} := x_1; \)
5: \{Verification stage\}
6: if \(x_1, x_2, \ldots, x_n \) are distinct and \(\sum_{i=1}^{n} d_{x_i, x_{i+1}} \leq B \) then
7: \(\text{“yes”;} \)
8: else
9: \(\text{“no”;} \)
10: end if
(The degree of nondeterminism is \(n \).

Time Complexity under Nondeterminism
- Nondeterministic machine \(N \) decides \(L \) in time \(f(n) \), where \(f : \mathbb{N} \rightarrow \mathbb{N} \), if
 - \(N \) decides \(L \), and
 - for any \(x \in \Sigma^* \), \(N \) does not have a computation path longer than \(f(|x|) \).
- We charge only the “depth” of the computation tree.

Time Complexity Classes under Nondeterminism
- \(\text{NTIME}(f(n)) \) is the set of languages decided by NTMs within time \(f(n) \).
- \(\text{NTIME}(f(n)) \) is a complexity class.

NP
- Define
 \[\text{NP} = \bigcup_{k>0} \text{NTIME}(n^k). \]
- Clearly \(P \subseteq \text{NP} \).
- Think of \(\text{NP} \) as efficiently verifiable problems.
 - Boolean satisfiability (SAT).
 - TSP (D).
 - Hamiltonian path.
 - Graph colorability.
- The most important open problem in computer science is whether \(P = \text{NP} \).
Simulating Nondeterministic TMs

Theorem 5 Suppose language L is decided by an NTM N in time $f(n)$. Then it is decided by a 3-string deterministic TM M in time $O(c^{f(n)})$, where $c > 1$ is some constant depending on N.

- On input x, M goes down every computation path of N using depth-first search (but M does not know $f(n)$).
- If some path leads to “yes,” then M enters the “yes” state.
- If none of the paths leads to “yes,” then M enters the “no” state.

Graph Reachability

- Let $G(V, E)$ be a directed graph (digraph).
- Reachability asks if, given nodes a and b, does G contain a path from a to b?
- Can be easily solved in polynomial time by breadth-first search.
- How about the nondeterministic space complexity?

NTIME vs. TIME

Corollary 6 $\text{NTIME}(f(n)) \subseteq \bigcup_{c>1} \text{TIME}(c^{f(n)})$.

- Does converting an NTM into a TM require exploring all the computation paths of the NTM as done in Theorem 5?
- This is the most important question in theory with practical implications.

The First Try in NSPACE($n \log n$)

1: $x_1 := a$; {Assume $a \neq b$.}
2: for $i = 2, 3, \ldots, n$ do
3: Guess $x_i \in \{v_1, v_2, \ldots, v_n\}$; {The ith node.}
4: end for
5: for $i = 2, 3, \ldots, n$ do
6: if $(x_{i-1}, x_i) \notin E$ then
7: “no”;
8: end if
9: if $x_i = b$ then
10: “yes”;
11: end if
12: end for
13: “no”;
In Fact \(\text{REACHABILITY} \in \text{NSPACE}(\log n) \)

1: \(x := 0; \)
2: \textbf{for} \(i = 2, 3, \ldots, n \) \textbf{do}
3: \hspace{1em} \text{Guess} \(y \in \{2, 3, \ldots, n\}; \{\text{The next node.}\}
4: \hspace{1em} \textbf{if} \ (x, y) \notin E \textbf{then}
5: \hspace{2em} \text{"no"};
6: \hspace{1em} \textbf{end if}
7: \hspace{1em} \textbf{if} \ y = b \textbf{then}
8: \hspace{2em} \text{"yes"};
9: \hspace{1em} \textbf{end if}
10: \hspace{1em} x := y;
11: \hspace{1em} \textbf{end for}
12: \text{"no"};

Infinite Sets

- A set is **countable** if it is finite or if it can be put in one-to-one correspondence with \(\mathbb{N} \), the set of natural numbers.
 - Set of integers \(\mathbb{Z} \).
 * \(0 \leftrightarrow 0, 1 \leftrightarrow 1, 2 \leftrightarrow 3, 3 \leftrightarrow 5, \ldots, -1 \leftrightarrow 2, -2 \leftrightarrow 4, -3 \leftrightarrow 6, \ldots \)
 - Set of positive integers \(\mathbb{Z}^+ \): \(i - 1 \leftrightarrow i \).
 - Set of odd integers: \((i - 1)/2 \leftrightarrow i \).
 - Set of rational numbers: See next page.
 - Set of squared integers: \(i \leftrightarrow \sqrt{i} \).

Space Analysis

- Variables \(i, x, \) and \(y \) each require \(O(\log n) \) bits.
- Testing \((x, y) \in E \) is accomplished by consulting the input string with counters of \(O(\log n) \) bits long.
- Hence

\[\text{REACHABILITY} \in \text{NSPACE}(\log n). \]

- \text{REACHABILITY} with more than one terminal node also has the same complexity.
- \text{REACHABILITY} \in P \ (p, 175).
Cardinality

- For any set A, define $|A|$ as A's **cardinality** (size).
- Two sets are said to have the same cardinality (written as $|A| = |B|$ or $A \sim B$) if there exists a one-to-one correspondence between their elements.
- 2^A denotes set A's **power set**, that is $\{ B : B \subseteq A \}$.
 - If $|A| = k$, then $|2^A| = 2^k$.
 - So $|A| < |2^A|$ when A is finite.

Cardinality and Infinite Sets

- If A and B are infinite sets, it is possible that $A \subseteq B$ yet $|A| = |B|$.
 - The set of integers properly contains the set of odd integers.
 - But the set of integers has the same cardinality as the set of odd integers (p. 94).
- A lot of "paradoxes."

Cardinality (concluded)

- $|A| \leq |B|$ if there is a one-to-one correspondence between A and one of B's subsets.
- $|A| < |B|$ if $|A| \leq |B|$ but $|A| \neq |B|$.
- If $A \subseteq B$, then $|A| \leq |B|$.
- But if $A \subseteq B$, then $|A| < |B|$?

Hilbert's\(^a\) Paradox of the Grand Hotel

- For a hotel with a finite number of rooms with all the rooms occupied, a new guest will be turned away.
- Now let us imagine a hotel with an infinite number of rooms, and all the rooms are occupied.
- A new guest comes and asks for a room.
 - "But of course!" exclaims the proprietor, and he moves the person previously occupying Room 1 into Room 2, the person from Room 2 into Room 3, and so on . . .
- The new customer occupies Room 1.

\(^a\)David Hilbert (1862-1943).
Hilbert’s Paradox of the Grand Hotel (concluded)

- Let us imagine now a hotel with an infinite number of rooms, all taken up, and an infinite number of new guests who come in and ask for rooms.
- “Certainly, gentlemen,” says the proprietor, “just wait a minute.”
- He moves the occupant of Room 1 into Room 2, the occupant of Room 2 into Room 4, and so on,
- Now all odd-numbered rooms become free and the infinity of new guests can be accommodated in them,
- “There are many rooms in my Father’s house, and I am going to prepare a place for you,” (John 14:3)

Cantor’sa Theorem

Theorem 7 The set of all subsets of \(\mathbb{N} \) (\(2^{\mathbb{N}} \)) is infinite and not countable.

- Suppose it is countable with \(f : \mathbb{N} \rightarrow 2^{\mathbb{N}} \) being a bijection.
- Consider the set \(B = \{ k \in \mathbb{N} : k \notin f(k) \} \subseteq \mathbb{N} \).
- Suppose \(B = f(n) \) for some \(n \in \mathbb{N} \).

aGeorg Cantor (1845-1918).

Galileo’sa Paradox (1638)

- The squares of the positive integers can be placed in one-to-one correspondence with all the positive integers.
- This is contrary to the axiom of Euclid that the whole is greater than any of its proper parts.
- Resolution of paradoxes: Pick the notion that results in “better” mathematics.
- The difference between a mathematical paradox and a contradiction is often a matter of opinion.

aGalileo (1564-1642).

The Proof (concluded)

- If \(n \in f(n) \), then \(n \in B \), but then \(n \notin B \) by \(B \)’s definition,a
- If \(n \notin f(n) \), then \(n \notin B \), but then \(n \in B \) by \(B \)’s definition,
- Hence \(B \neq f(n) \) for any \(n \).
- \(f \) is not a bijection, a contradiction.

aIf \(B \) is empty, skip this part. Thanks to a lively class discussion on October 1, 2003.
A Corollary of Cantor’s Theorem

Corollary 8 For any set T, finite or infinite,

$$|T| < |2^T|.$$

- The inequality holds in the finite A case.
- Assume A is infinite now.
- $|T| \leq |2^T|$: Consider $f(x) = \{x\}$.
- The strict inequality uses the same argument as Cantor’s theorem.

A Second Corollary of Cantor’s Theorem

Corollary 9 The set of all functions on N is not countable.

- Every function $f : \mathbb{N} \to \{0, 1\}$ determines a set
 $$\{n : f(n) = 1\} \subseteq \mathbb{N},$$

- And vice versa.
- So the set of functions from N to $\{0, 1\}$ has cardinality
 $|2^\mathbb{N}|$.
- Corollary 8 (p. 106) then implies the claim.

How about ...?

- Consider this subset of $2^\mathbb{N}$:
 $$2^{\mathbb{N}}_{=k} \equiv \{x : x \subseteq \mathbb{N}, \ |x| = k\}.$$

- Is it still uncountable?
- No.
 - $|2^\mathbb{N}_{=1}| = |\mathbb{N}|$.
 - $|2^\mathbb{N}_{=2}| = |\mathbb{Q}|$.

\(^a\)Thanks to a lively class discussion on October 1, 2003.
Existence of Uncomputable Problems

- Every program is a finite sequence of 0s and 1s, thus a nonnegative integer.
- Hence every program corresponds to some integer.
- The set of programs is countable.
- A function is a mapping from integers to integers.
- The set of functions is not countable by Corollary 9 (p. 107).
- So there must exist functions for which there are no programs.

The Halting Problem

- Undecidable problems are problems that have no algorithms or languages that are not recursive.
- We knew undecidable problems exist (p. 108).
- We now define a concrete undecidable problem, the halting problem:
 \[H = \{ M; x : M(x) \neq \gamma \} , \]
 - Does \(M \) halt on input \(x \)?

Universal Turing Machine

- A universal Turing machine \(U \) interprets the input as the description of a TM \(M \) concatenated with the description of an input to that machine, \(x \).
 - Both \(M \) and \(x \) are over the alphabet of \(U \).
- \(U \) simulates \(M \) on \(x \) so that
 \[U(M; x) = M(x) \] .
- \(U \) is like a modern computer, which executes any valid machine code, or a Java Virtual machine, which executes any valid bytecode.

\(H \) is Recursively Enumerable

- Use the universal TM \(U \) to simulate \(M \) on \(x \).
- When \(M \) is about to halt, \(U \) enters a “yes” state.
- If \(M(x) \) diverges, so does \(U \).
- This TM accepts \(H \).
- Membership of \(x \) in any recursively enumerable language accepted by \(M \) can be answered by asking
 \[M; x \in H ? \]
H Is Not Recursive

- Suppose there is a TM M_H that decides H.
- Consider the program $D(M)$ that calls M_H:
 1. if $M_H(M;M) =$ "yes" then
 2. \n; { Writing an infinite loop is easy, right?}
 3. else
 4. "yes";
 5. end if
- Consider $D(D)$:
 - $D(D) =$ */\Rightarrow M_H(D;D) =$ "yes" $\Rightarrow D; D \in H \Rightarrow D(D) = ^*/\$, a contradiction,
 - $D(D) =$ "yes" $\Rightarrow M_H(D;D) =$ "no" $\Rightarrow D; D \notin H \Rightarrow D(D) = ^*/\$, a contradiction.

Self-Loop Paradoxes

Cantor’s Paradox (1899): Let T be the set of all sets.
- Then $2^T \subseteq T$, but we know $|2^T| > |T|$

Russell’s Paradox (1901): Consider $R = \{A : A \notin A\}$.
- If $R \in R$, then $R \notin R$ by definition.
- If $R \notin R$, then $R \in R$ also by definition,

Eubulides: The Cretan says, “All Cretans are liars.”

Sharon Stone in The Specialist (1994): “I’m not a woman you can trust.”

Comments

- In general, we cannot tell if a running program will ever halt.
- Two levels of interpretations of M:
 - A sequence of 0s and 1s (data).
 - An encoding of instructions (programs).
- There are no paradoxes,
 - Concepts should be familiar to computer scientists,
 - Supply a C compiler to a C compiler, a Lisp interpreter to a Lisp interpreter, etc.

Axiomatic Set Theory

- Russell’s paradox initiated the effort to axiomatize set theory in 1908 1929.
- The standard theory is the Zermelo-Fraenkel-Skolem (ZFS) system.\(^a\)
- In ZFS, the Axiom of Foundation says that any descending membership chain is finite.
- Then $x \notin x$ for any set x.
 - Otherwise, $x \in x \in x \in \ldots$, a contradiction
- Hence Russell’s paradox is avoided.

\(^a\)Ernst Friedrich Ferdinand Zermelo (1871 1953); Adolf Abraham Halevi Fraenkel (1891 1965); Albert Thoralf Skolem (1887 1963),
More Undecidability

- \{M : M \text{ halts on all inputs}\},
- Given \(M; x\), we construct the following machine:
 * \(M_x(y)\) : if \(y = x\) then \(M(x)\) else halt,
- \(M_x\) halts on all inputs if and only if \(M\) halts on \(x\).
- So if the said language were recursive, \(H\) would be recursive, a contradiction.
- This technique is called \textit{reduction}.

Reductions in Proving Undecidability

- Suppose we are asked to prove \(L\) is undecidable,
- Language \(H\) is known to be undecidable.
- We try to find a computable transformation (or reduction) \(R\) such that
 \[R(x) \in L \text{ if and only if } x \in H. \]
- This suffices to prove that \(L\) is undecidable.

More Undecidability (concluded)

- \(\{M; x : \text{there is a } y \text{ such that } M(x) = y\}\).
- \(\{M; x : \text{the computation } M \text{ on input } x \text{ uses all states of } M\}\).
- \(\{M; x; y : M(x) = y\}\).

Complements of Recursive Languages

\textbf{Lemma 10} If \(L\) is recursive, then so is \(L^c\).

- Let \(L\) be decided by \(M\) (which is deterministic).
- Swap the “yes” state and the “no” state of \(M\).
- The new machine decides \(L^c\).
Recursive and Recursively Enumerable Languages

Lemma 11 \(L \) is recursive if and only if both \(L \) and \(L' \) are recursively enumerable.

- Suppose both \(L \) and \(L' \) are recursively enumerable, accepted by \(M \) and \(M' \), respectively.
- Simulate \(M \) and \(M' \) in an interleaved fashion,
- If \(M \) accepts, then \(x \in L \) and \(M' \) halts on state “yes,”
- If \(M' \) accepts, then \(x \notin L \) and \(M' \) halts on state “no.”

R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are recursively enumerable (note that coRE is not RE).

R: The set of all recursive languages.

- \(R = \text{RE} \cap \text{coRE} \) (p. 120).
- There exist languages in RE but not in R or coRE (such as \(H \)).
- There are languages in coRE but not in R or RE (such as \(H \)).
- There are languages in neither RE nor coRE.

A Very Useful Corollary and Its Consequences

Corollary 12 \(L \) is recursively enumerable but not recursive, then \(L \) is not recursively enumerable.

- Suppose \(L \) is recursively enumerable.
- Then both \(L \) and \(L' \) are recursively enumerable.
- By Lemma 11, \(L \) is recursive, a contradiction.

Corollary 13 \(R \) is not recursively enumerable.
Notations
- Suppose M is a TM accepting L.
- Write $L(M) = L$.
- If $M(x)$ is never “yes” nor $\not\nearrow$ (as required by the definition of acceptance), we define $L(M) = \emptyset$.
- Of course, if $M(x) = \not\nearrow$ for all x, then $L(M) = \emptyset$, too.

Rice's Theorem

Theorem 14 (Rice's theorem) Suppose $C \neq \emptyset$ is a proper subset of the set of all recursively enumerable languages. Then the question “$L(M) \in C$?" is undecidable.

- Assume that $\emptyset \not\in C$ (otherwise, repeat the proof for the class of all recursively enumerable languages not in C).
- Let $L \in C$ be accepted by TM M_L (recall that $C \neq \emptyset$).
- Let M_H accept the undecidable language H.
 - M_H exists (p. 111).

Nontrivial Properties of Sets in RE

- A property of a set accepted by a TM (a recursively enumerable set) is **trivial** if it is always true or false.
 - Is an RE set accepted by a TM? Always true.
- It can be defined by the set C of RE sets that satisfy it.
- The property is nontrivial if $C \neq \text{RE}$ and $C \neq \emptyset$.
- Up to now, all nontrivial properties of RE sets are undecidable (pp. 116 117).
- In fact, Rice's theorem confirms that.

The Proof (continued)

- Construct machine $M_x(y)$:

 $$ \text{if } M_H(x) = \text{"yes" then } M_L(y) \text{ else } \not\nearrow $$

- We next prove that

 $$ L(M_x) \in C \text{ if and only if } x \in H. \quad (2) $$

 - The halting problem has been reduced to deciding $L(M_x) \in C$.
 - Hence $L(M_x) \in C$ must be undecidable, and we are done.
The Proof (concluded)

- Suppose $x \in H$, i.e., $M_H(x) = \text{"yes."}$
 - $M_x(y)$ determines this, and it either accepts y or never halts, depending on whether $y \in L$.
 - Hence $L(M_x) = L \in C$.
- Suppose $M_H(x) \Rightarrow$.
 - M_x never halts.
 - $L(M_x) = \emptyset \notin C$.

Consequences of Rice’s Theorem

Corollary 15 The following properties of recursively enumerative sets are undecidable.

- **Emptiness.**
- **Finiteness.**
- **Regularity.**
- **Context-freedom.**