Generalized 2sat: max2sat

- Consider a 2 SAT expression.
- Let $K \in \mathbb{N}$.
- max2sat is the problem of whether there is a truth assignment that satisfies at least K of the clauses.
- max2sat becomes 2 Sat when K equals the number of clauses.
- MAX2SAT is an optimization problem.
- max2sat \in NP: Guess a truth assignment and verify the count.

MAX2SAT Is NP-Complete ${ }^{\text {a }}$

- Consider the following 10 clauses:

$$
\begin{gathered}
(x) \wedge(y) \wedge(z) \wedge(w) \\
(\neg x \vee \neg y) \wedge(\neg y \vee \neg z) \wedge(\neg z \vee \neg x) \\
(x \vee \neg w) \wedge(y \vee \neg w) \wedge(z \vee \neg w)
\end{gathered}
$$

- Let the 2SAT formula $r(x, y, z, w)$ represent the conjunction of these clauses.
- How many clauses can we satisfy?
- The clauses are symmetric with respect to x, y, and z.
${ }^{\text {a }}$ Garey, Johnson, Stockmeyer, 1976.

The Proof (continued)

All of x, y, z are true: By setting w to true, we can satisfy $4+0+3=7$ clauses.

Two of x, y, z are true: By setting w to true, we can satisfy $3+2+2=7$ clauses.

One of x, y, z is true: By setting w to false, we can satisfy $1+3+3=7$ clauses.

None of x, y, z is true: By setting w to false, we can satisfy $0+3+3=6$ clauses, whereas by setting w to true, we can satisfy only $1+3+0=4$ clauses.

The Proof (continued)

- Any truth assignment that satisfies $x \vee y \vee z$ can be extended to satisfy 7 of the 10 clauses and no more.
- Any other truth assignment can be extended to satisfy only 6 of them.
- The reduction from 3SAT ϕ to max2Sat $R(\phi)$:
- For each clause $C_{i}=(\alpha \vee \beta \vee \gamma)$ of ϕ, add group $r\left(\alpha, \beta, \gamma, w_{i}\right)$ to $R(\phi)$.
- If ϕ has m clauses, then $R(\phi)$ has $10 m$ clauses.
- Set $K=7 m$.

The Proof (concluded)

- We now show that K clauses of $R(\phi)$ can be satisfied if and only if ϕ is satisfiable.
- Suppose $7 m$ clauses of $R(\phi)$ can be satisfied.
- 7 clauses must be satisfied in each group because each group can have at most 7 clauses satisfied.
- Hence all clauses of ϕ must be satisfied.
- Suppose all clauses of ϕ are satisfied.
- Each group can set its w_{i} appropriately to have 7 clauses satisfied.
- The naEsat (for "not-all-equal" sat) is like 3sat.
- But we require additionally that there be a satisfying truth assignment under which no clauses have the three literals equal in truth value.
- Each clause must have one literal assigned true and one literal assigned false.

NaESAT Is NP-Complete ${ }^{a}$

- Recall the reduction of circuit sat to sat on p. 203.
- It produced a CNF ϕ in which each clause has at most 3 literals.
- Add the same variable z to all clauses with fewer than 3 literals to make it a 3SAT formula.
- Goal: The new formula $\phi(z)$ is naE-satisfiable if and only if the original circuit is satisfiable.

[^0]
The Proof (continued)

- Suppose T naE-satisfies $\phi(z)$.
- \bar{T} also NAE-satisfies $\phi(z)$.
- Under T or \bar{T}, variable z takes the value false.
- This truth assignment must still satisfy all clauses of ϕ.
- So it satisfies the original circuit.

The Proof (concluded)

- Suppose there is a truth assignment that satisfies the circuit.
- Then there is a truth assignment T that satisfies every clause of ϕ.
- Extend T by adding $T(z)=$ false to obtain T^{\prime}.
- T^{\prime} satisfies $\phi(z)$.
- So in no clauses are all three literals false under T^{\prime}.
- Under T^{\prime}, in no clauses are all three literals true. * Review the construction on p. 204 and p. 205.

Undirected Graphs

- An undirected graph $G=(V, E)$ has a finite set of nodes, V, and a set of undirected edges, E.
- It is like a directed graph except that the edges have no directions and there are no self-loops.
- We use $[i, j]$ to denote the fact that there is an edge between node i and node j.

Independent Sets

- Let $G=(V, E)$ be an undirected graph.
- $I \subseteq V$.
- I is independent if whenever $i, j \in I$, there is no edge between i and j.
- The independent set problem: Given an undirected graph and a goal K, is there an independent set of size K ?
- Many applications.

independent set Is NP-Complete

- This problem is in NP: Guess a set of nodes and verify that it is independent and meets the count.
- If a graph contains a triangle, any independent set can contain at most one node of the triangle.
- We consider graphs whose nodes can be partitioned in m disjoint triangles.
- If the special case is hard, the original problem must be at least as hard.

Reduction from 3sat to INDEPENDENT SET

- Let ϕ be an instance of 3SAT with m clauses.
- We will construct graph G (with constraints as said) with $K=m$ such that ϕ is satisfiable if and only if G has an independent set of size K.
- There is a triangle for each clause with the literals as the nodes.
- Add additional edges between x and $\neg x$ for every variable x.

A Sample Construction

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)
$$

The Proof (continued)

- Suppose G has an independent set I of size $K=m$.
- An independent set can contain at most m nodes, one from each triangle.
- An independent set of size m exists if and only if it contains exactly one node from each triangle.
- Truth assignment T assigns true to those literals in I.
- T is consistent because contradictory literals are connected by an edge, hence not both in I.
- T satisfies ϕ because it has a node from every triangle, thus satisfying every clause.

The Proof (concluded)

- Suppose a satisfying truth assignment T exists for ϕ.
- Collect one node from each triangle whose literal is true under T.
- This set of m nodes must be independent by construction.

Corollary 36 4-DEGREE INDEPENDENT SET is NP-complete.

Theorem 37 independent set is NP-complete for planar graphs.

CLIQUE and NODE COVER

- We are given an undirected graph G and a goal K.
- Clique asks if there is a set of K nodes that form a clique, which have all possible edges between them.
- node cover asks if there is a set C with K or fewer nodes such that each edge of G has at least one of its endpoints in C.

CLIqUE Is NP-Complete

Corollary 38 CLIQUE is NP-complete.

- Let \bar{G} be the complement of G, where $[x, y] \in \bar{G}$ if and only if $[x, y] \notin G$.
- I is a clique in $G \Leftrightarrow I$ is an independent set in \bar{G}.

NODE COVER Is NP-Complete

Corollary 39 node cover is $N P$-complete.

- I is an independent set of $G=(V, E)$ if and only if $V-I$ is a node cover of G.

MIN CUT and MAX CUT

- A cut in an undirected graph $G=(V, E)$ is a partition of the nodes into two nonempty sets S and $V-S$.
- The size of a cut $(S, V-S)$ is the number of edges between S and $V-S$.
- min cut $\in \mathrm{P}$ by the maxflow algorithm.
- max cut asks if there is a cut of size at least K.
- K is part of the input.

max cut Is NP-Complete ${ }^{a}$

- We will reduce naesat to max cut.
- Given an instance ϕ of 3SAT with m clauses, we shall construct a graph $G=(V, E)$ and a goal K such that:
- There is a cut of size at least K if and only if ϕ is NAE-satisfiable.
- Our graph will have multiple edges between two nodes.
- Each such edge contributes one to the cut if its nodes are separated.

[^1]
Reduction from NAESAT to MAX CUT

- Suppose ϕ 's m clauses are $C_{1}, C_{2}, \ldots, C_{m}$.
- The boolean variables are $x_{1}, x_{2}, \ldots, x_{n}$.
- G has $2 n$ nodes: $x_{1}, x_{2}, \ldots, x_{n}, \neg x_{1}, \neg x_{2}, \ldots, \neg x_{n}$.
- Each clause with 3 distinct literals makes a triangle in G.
- For each clause with two identical literals, there are two parallel edges between the two distinct literals.
- No need to consider clauses with one literal (why?).
- For each variable x_{i}, add n_{i} copies of the edge $\left[x_{i}, \neg x_{i}\right]$, where n_{i} is the number of occurrences of x_{i} and $\neg x_{i}$ in ϕ.

A Sample Construction (Cut Size Is 13)

$$
\left(\mathscr{X}_{1} \bigvee_{2} \mathscr{X}_{2}\right) \bigwedge\left(\mathscr{X}_{1} \bigvee \neg_{2} \mathscr{X}_{3} \neg_{2}\right) \wedge\left(\mathfrak{X}_{1} \bigvee \mathcal{X}_{2} \mathscr{X}_{2} \mathscr{X}_{3}\right)
$$

The Proof

- Set $K=5 m$.
- Suppose there is a cut $(S, V-S)$ of size $5 m$ or more.
- A clause (a triangle or two parallel edges) contributes at most 2 to a cut no matter how you split it.
- Suppose both x_{i} and $\neg x_{i}$ are on the same side of the cut.
- Then they together contribute at most $2 n_{i}$ edges to the cut as they appear in at most n_{i} different clauses.

The Proof (continued)

- Changing the side of a literal contributing at most n_{i} to the cut does not decrease the size of the cut.
- Hence we assume variables are separated from their negations.
- The total number of edges in the cut that join opposite literals is $\sum_{i} n_{i}=3 m$.
- The total number of literals is $3 m$.

The Proof (concluded)

- The remaining $2 m$ edges in the cut must come from the m triangles or parallel edges that correspond to the clauses.
- As each can contribute at most 2 to the cut, all are split.
- A split clause means at least one of its literals is true and at least one false.
- The other direction is left as an exercise.

A New Cut (Cut Size Is 15)

MAX BISECTION

- max cut becomes max bisection if we require that $|S|=|V-S|$.
- It has many applications, especially in VLSI layout.
- Sometimes imposing additional restrictions makes a problem easier.
- SAT to 2SAT.
- Other times, it makes the problem as hard or harder.
- MIN CUT to BISECTION WIDTH.
- LINEAR PROGRAMMING to INTEGER PROGRAMMING.

MAX BISECTION Is NP-Complete

- We shall reduce the more general max cut to max BISECTION.
- Add $|V|$ isolated nodes to G to yield G^{\prime}.
- G^{\prime} has $2 \times|V|$ nodes.
- As the new nodes have no edges, moving them around contributes nothing to the cut.

The Proof (concluded)

- Every cut $(S, V-S)$ of $G=(V, E)$ can be made into a bisection by appropriately allocating the new nodes between S and $V-S$.
- Hence each cut of G can be made a cut of G^{\prime} of the same size, and vice versa.

BISECTION WIDTH

- Bisection width is like max bisection except that it asks if there is a bisection of size at most K (sort of min BISECTION).
- Unlike min cut, bisection width remains NP-complete.
- A graph $G=(V, E)$, where $|V|=2 n$, has a bisection of size K if and only if the complement of G has a bisection of size $n^{2}-K$.

Illustration

HAMILTONIAN PATH Is NP-Complete ${ }^{\text {a }}$

- Given an undirected graph, the question whether it has a Hamiltonian path is NP-complete.
- The "messy" reduction is from 3sat.
- We skip the proof.
${ }^{\mathrm{a}}$ Karp, 1972.

TSP (D) Is NP-Complete

Corollary 40 TSP (D) is NP-complete.

- Given a graph G with n nodes, define $d_{i j}=1$ if $[i, j] \in G$ and $d_{i j}=2$ if $[i, j] \notin G$.
- Set the budget $B=n+1$.
- Note that if G has no Hamiltonian paths, then any tour must contain at least two edges with weight 2.
- The total cost is then at least $(n-2)+2 \cdot 2=n+2$.
- There is a tour of length B or less if and only if G has a Hamiltonian path.

Hamiltonian Path and TSP Tour

Graph Coloring

- k-coloring asks if the nodes of a graph can be colored with k colors (or fewer) such that no two adjacent nodes have the same color.
- 2-coloring is in P .
- 3-coloring is NP-complete.
- Since 3 -coloring is a special case of k-coloring for any $k \geq 4, k$-COLORING is NP-complete for $k \geq 3$.

3-COLORING Is NP-Complete ${ }^{\text {a }}$

- We will reduce naesat to 3 -coloring.
- We are given a set of clauses $C_{1}, C_{2}, \ldots, C_{m}$ each with 3 literals.
- The boolean variables are $x_{1}, x_{2}, \ldots, x_{n}$.
- We shall construct a graph G such that it can be colored with colors $\{0,1,2\}$ if and only if all the clauses can be NAE-satisfied.

[^2]
The Proof (continued)

- Every variable x_{i} is involved in a triangle $\left[a, x_{i}, \neg x_{i}\right]$ with a common node a.
- Each clause $C_{i}=\left(c_{i 1} \vee c_{i 2} \vee c_{i 3}\right)$ is also represented by a triangle

$$
\left[c_{i 1}, c_{i 2}, c_{i 3}\right]
$$

- There is an edge between $c_{i j}$ and the node that represents the j th literal of C_{i}.

Construction for $\cdots \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge \cdots$

The Proof (continued)

Suppose the graph is 3 -colorable.

- Assume without loss of generality that node a takes the color $2, x_{i}$ takes the color 1 , and $\neg x_{i}$ takes the color 0 .
- A triangle must use all 3 colors.
- The clause triangle cannot be linked to nodes with all 1 s or all 0 s ; otherwise, it cannot be colored with 3 colors.
- Treat 1 as true and 0 as false (it is consistent).
- Treat 2 as either true or false; it does not matter.
- As each clause triangle contains one color 1 and one color 0 , the clauses are NAE-satisfied.

The Proof (concluded)

Suppose the clauses are NAE-satisfiable.

- Color node a with color 2.
- Color the nodes representing literals by their truth values (color 0 for false and color 1 for true).
- For each clause triangle:
- Pick any two literals with opposite truth values and color the corresponding nodes with 0 if the literal is true and 1 if it is false.
- Color the remaining node with color 2.

[^0]: ${ }^{\mathrm{a}}$ Karp, 1972.

[^1]: ${ }^{\text {a }}$ Garey, Johnson, Stockmeyer, 1976.

[^2]: ${ }^{\mathrm{a}}$ Karp, 1972.

