
1

Efficient On-Line Schedulability Tests 
and Configuration Selection

Tei-Wei Kuo
Real-Time and Embedded System Laboratory

Dept of Computer Science and Info. Engr.
National Taiwan University

Taipei, Taiwan

Contents
Motivation
Configuration Selection
Schedulability Test for the 
Liu&Layland Model
Schedulability Test for the   
Multiframe Model
Performance Evaluation
Conclusion



2

Motivation

In there a systematic way in 
selecting a better configuration for 
processes?
If overload is detected, what should 
we do?
How to schedule processes whose 
timing constraints change in 
reaction to the environment?

What to do when overload is detected?
Graceful Degradation! But how?

Load Shedding – kill less important processes!
Relax timing constraint briefly!

E.g., instead of processing a sporadic interrupt 
within 5 seconds, promise to process 2 
interrupts within 10 seconds!

Time5 10

Time5 10
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Another thought in relaxing timing 
constraints!

Load Scaling
Unschedulable configurations

{(τA, 1.5, 3), (τB, 2, 4)}
{(τA, 1.5, 3), (τB, 2.5, 5)}

Schedulable configurations
{(τA, 1.5, 3), (τB, 3, 6)}
Furthermore,
{(τA, 1.5, 3), (τB, 1.5, 3)}
τA and τB become schedulable when their 
periods are harmonically related!!

Questions: How to choose periods?

Configuration Selection Problem:
Given a set of configurations, choose 
a schedulable configuration!
Period Assignment Problem:

Given a set of adaptive processes, 
choose a schedulable configuration!

• An adaptive process may change 
its timing constraints!
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Introduction
Needs of Schedulability Tests

Performance Guarantee
Resource Reservation
Open System Architecture
etc

Approaches:
Achievable Utilization Factor
Rate Monotonic Analysis (RMA)

Introduction
A Sufficient Schedulability Condition

Liu & Layland
(n = process #)

Kuo & Mok
(k = fundamental frequency #)

Mok & Chen 
(r = min (ci

0/ci
1))

and various tests by Han, et al.
Sufficient and Necessary Schedulability
Conditions

Rate Monotonic Analysis (RMA)
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Introduction
Motivation

On-line schedulability tests 
Better precision

15

60

3 5 p4’ = 48
U4=1.0

p3’ = 12
U3=0.833

p2’ = 3
U2=0.666

p1’ = 3
U1=0.333

Op 3  
(r=3) 

p4’ = 40
U4=1.0

p3’ =10 
U3=0.8

p2’ = 5
U2=0.6

p1’ = 2.5
U1=0.4

Op 2 
(r=2.5) 

p4’ = 60
U4=1.066

p3’ = 15
U3=0.933

p2’ = 3.75
U2=0.8

p1’ = 1.875
U1=0.533

Op 1 
(r=1.875) 

(8,60)
U4=0.8

(2,15)
U3=0.666

(1,5)
U2=0.533

(1,3)
U1=0.333

(ci, pi)

τ4τ3τ2τ1

Han-TyanKuo-Mok
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Our Approach

Exploit the harmonic relationship of 
task periods to improve existing 
schedulability tests:

Liu & Layland Process Model
Multiframe Process Model

Efficient for on-line implementation.
Effective for heavy CPU utilizations!
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Definitions

Critical Instant
Critical Interval
Utilization Factor

Division Graph
Root τ3:15

τ1:3

τ4:20

τ2:5

∑
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Definitions
Offspring Set
e.g., {τ1, τ2, τ4} and {τ1, τ2, τ3, τ4, τ5} are 
offspring sets of τ5.

Reduced Set and RS-Representative
A process τ is a RS-representative of a set

{τ1, τ2, τ3} if the period of  τ
is 15, and the utilization factor is 

equal to the sum of the utilization 
factors of τ1, τ2, and τ3 .

{τ1, τ2, τ3} is a reduced set of τ .

τ3:15

τ5:60

τ1:3

τ4:20

τ2:5
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Schedulability Tests for the 
Liu&Layland Model

Computing the smallest harmonic 
base

Definition: Division Graph
An irreflexive, asymmetric, transitive, 
acyclic directed graph to represent 
the divisibility relation among a set of 
real numbers

Theorem 9 [KM:97] Given a set of n 
processes, there exists a 
corresponding division graph G. If K 
is the minimum number that G can 
be decomposed into vertex-disjoint 
linear paths, then its least upper 
bound of utilization factor is K(21/K-1).

τ3:15

τ5:60

τ1:3

τ4:20

τ2:5

Schedulability Tests for the 
Liu&Layland Model

Definition: Minimum 
Linear Covering 
[KM:97] – Given an 
acyclic directed graph G, 
the problem is to find the 
smallest integer K such 
that the vertices of G are 
partitioned into K vertex-
disjoint linear paths. K is 
the minimum linear 
covering number of G.

An O(N5/2) Algorithm
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Schedulability Tests for the 
Liu&Layland Model

More Precise Schedulability Tests?

Schedulability Tests for the 
Liu&Layland Model

Theorem 1  [Lehoczky, Sha, Ding 89]
Process  τi in a set of periodic processes 
scheduled by a fixed-priority-driven preemptive 
scheduling algorithm will always meets its 
deadline for all processes phases if and only if 
there exists a pair (k,m) in Ri such that 

where
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Schedulability Tests for the 
Liu&Layland Model

Lemma 1
Suppose that Ti-1 is schedulable. Let τj be any process in Ti, TOj

a subset of an offspring set of τj in Ti which includes τj, and τ
the RS-representative of TOj.  Let process τ’ be the process with the 
largest period in  (Ti – TOj∪{τ}), where the period and computation 
requirements of τ’ are pi and c, respectively. If there exists a pair

such that 

where , 
then Ti (including τi) is schedulable.
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Schedulability Tests for the 
Liu&Layland Model

Theorem 2
Suppose that Ti-1 is schedulable, and STi is a non-empty subset of Ti. For 
each process τj in STi, let TOj be a subset of an offspring set of τj in Ti
such that TOj ∩ STi = {τj}, and TOj ∩ TOk = {} for any two distinct 
processes τj and τk in STi. For each process τj in STi, τ’j is the RS-
representative of TOj. Let process τ’ be the process with the largest 
period in  

where the period and the computation requirements of τ’ are pi and  c,
respectively. If there exists a pair                    such that

where   then Ti is schedulable.
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Schedulability Tests for the 
Liu&Layland Model

Theorem 3 [Liu&Layland 73]
A set of n periodic processes is schedulable if the total 
utilization factor of the process set is no larger than 

Theorem 4
Suppose that Ti-1 is schedulable. Let k be the number of 
roots in Ti. If the total utilization factor of Ti is no larger than     

then Ti is schedulable.
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A Schedulability Test Algorithm

Step 1: i = 1;
Step 2: If there are K roots in Ti

and Ui ≤K(21/K-1),
Then τi is schedulable
Else the schedulability of τi is 
not guaranteed; Exit;

Step 3: i = i + 1;
Step 4: Goto Step 1 unless i > n;

Complexity: O(n2)
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Schedulability Tests for the 
Liu&Layland Model

Example :
F(1) = 1
F(2) = 0.8284
F(3) = 0.7798
F(4) = 0.7568
F(5) = 0.7435

Theorem 5 [Kuo&Mok 91]
A set of periodic processes with k fundamental 
frequencies is schedulable if the total utilization 
factor of the process set is no larger than

)12(
1

−kk

15

60

3

20

5

)12()( 1 −= nnnF

Extension: Multiframe Model

Why the Multiframe model?
Modeling of processes with varying 
timing constraints!
Modeling of processes with skipping 
of process executions in consecutive 
periods.

Goal:
Extend the idea of reduced-set-based 
schedulability tests to the multiframe
model to have a more precise test!
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Schedulability Tests for the 
Multiframe Model

Definition [Mok and Chen 96]
– Multiframe Process 

A multiframe real-time process τi is a tuple (Γi,pi), where Γi is an  array of Ni
execution times  (c0

i, c1
i, …, cNi-1

i) for some Ni ≥ 1, and pi is the period of τi. 

– Remark : 
Let c0

i be the maximum in an array of execution times                  
(c0

i, c1
i, …, cNi-1

i) . c0
i is called the peak execution time of τi .

– AM Multiframe Process
An array (c0

i, c1
i, …, cNi-1

i) is said to be AM (Accumulative 
Monotonic) if

A multiframe process τi = {Γi= (c0
i, c1

i, …, cNi-1
i),pi} is said to be AM if 

its array of execution times is AM .
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Schedulability Tests for the 
Multiframe Model

Critical Instance of AM Multiframe Process 
[Mok&Chen 96]

The critical instance of an AM multiframe process is the 
beginning of the period when its peak execution time is 
requested  simultaneously with the peak execution times of 
all higher priority  processes.
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Schedulability Tests for the 
Multiframe Model

Reduced Set and RS-Representative of AM Multiframe Process
Suppose that τ = {Γ= (c0, c1, …, cN-1), p} is a multiframe periodic 
process with period  p and an array Γ of computation 
requirements. 

A set of n AM multiframe periodic processes {τ1, τ2, …, τn}, 
where process τi has period pi and an array Γi= (c0

i, c1
i, …, cNi-1

i) of 
Ni computation requirements, is a reduced set of τ if       

τ is called the RS-representative of the reduced set.
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Schedulability Tests for the 
Multiframe Model

//

//

//
Time

Time

Time

τ = {(6,6,5), 6}

τ1= {(2,1,1), 3}

τ2= {(3), 6}

Claim 1:  The RS-representative of a set of AM multiframe
periodic processes is an AM multiframe periodic process.
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Schedulability Tests for the 
Multiframe Model

Theorem 6  [Mok&Chen 96]
For the preemptive fixed priority scheduling policy, an AM 
multiframe process is schedulable if it is schedulable at its critical 
instance

Theorem 7
Process τi in a set of AM multiframe periodic processes 
scheduled by a fixed priority-driven preemptive scheduling 
algorithm will always meet its deadline for all process phases iff
there exists a pair (k,m) ∈ Ri such that
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Schedulability Tests for the 
Multiframe Model

Lemma 2
Suppose that the AM multiframe process set  Ti-1 is schedulable. 
Let be τj any multiframe process in Ti, TOj any subset of an 
offspring set  of τj, and τj = {(c0, c1, …, cN-1), p} the RS-
representative of TOj. Let process τ’ be the process with the 
largest period in (Ti - TOj∪{τ}), where the period and the array 
computation requirements of τ’ are pi and Γ’ = (c’0, c’1, …, 
c’N’-1) , respectively. If there exists a pair (k, m) ∈ R’ such that

where ,  then AM 

multiframe process set  Ti is schedulable. 
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Schedulability Tests for the 
Multiframe Model

Theorem 8
Suppose that the AM multiframe process set Ti-1 is schedulable, and STi is a 
non-empty subset of the AM multiframe process set Ti. For each process  τj
∈ Ti, let TOj be a subset of an offspring set of τj in Ti such that  TOj ∩ STi= 
{τj}, and TOj ∩ TOk = {} for any two distinct processes τj and τk in STi. For 
each process τj ∈ STi, τ’j is the RS-representative of TOj. Let process τ’ be 
the process with the largest period in

where the period and the array of computation requirements of τ’ are pi and 
Γ’ = (c’0, c’1, …, c’N’-1) , respectively. If there exists a pair (k, m) ∈ R’ such 
that

where then Ti is schedulable.
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Schedulability Tests for the 
Multiframe Model

Definition: Peak Utilization Factor
The peak utilization factor Um of an AM multiframe

process set T = {τ1, …, τn} is equal to

where c0
i and pi are the peak execution time and period of 

τi, respectively.

Theorem 9 [Mok&Chen96]
Let                                    .  

For process sets of size n, the bound on peak utilization 
factor is given by
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Schedulability Tests for the 
Multiframe Model

Theorem 10
Suppose that Ti-1 is schedulable. Let k be the number of roots in 
Ti. If the total peak utilization factor of Ti is no larger than

then Ti is schedulable, where r is calculated based on the RS-
representative set of Ti.

Remark : 
There is no way to directly compare the bounds on the peak 
utilization factors derived by Theorems 9 and 10 because r 
might be different in the original and transformed process sets.
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Performance Evaluation
Polynomial-Time Schedulability Tests under Comparison:

Liu&Layland Model
Liu & Layland 73 
(n = process #)
Kuo & Mok 91
(k = fundamental frequency #)
Han & Tyan 97 (DCT+Sr)
Root/Reduced-Set Method

Multiframe Model
Mok & Chen 96
(r = min (ci

0/ci
1))

Han & Tyan 98 (DCT+Sr)
Root/Reduced-Set Method
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Performance Evaluation
Performance Metrics

Guarantee Ratio: 

Data Sets
Number of processes  per process set: randomly chosen 
between 10 and 30.
Fundamental frequencies: 

1/4 ~ 1/10 of the number of processes. 
Probability of assigning i fundamental frequencies to a 
process is (1/2)i-1. Random assignment!

Utilization factor ranges from 70% ~ 95%.
70% ~ 110% for multiframe process sets.
Cj

i=C0
i / rj

i for ri in (2, 5), for each multiframe process τi.
400 process sets per utilization factor were tested 

sets) process of(number 
sets) process eschedulabl guarantee of(number 

Liu&Layland Model
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Multiframe Model

When r ∈ (2, 5) !

Multiframe Model

When r ∈ (2, 10)!
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Conclusion
Summary

Provides efficient on-line schedulability tests which 
consider harmonic relationship of process periods and 
the variance of computation times in different periods. 
Provide better precision in identifying schedulable 
process sets, even under heavy CPU utilization.

Future research
Extend the reduced-set methodology to analyze the 
schedulability of soft and firm real-time process sets 
A process set mixed with hard, soft, and firm real-time 
processes.
Generalize the results to RMA-based schedulability
tests to speed up their performance.


