
1

Real-Time Operating Systems &
Resource Management

Tei-Wei Kuo, Ph.D.
ktw@csie.ntu.edu.tw
Dept. of Computer Science &
Information Engineering
National Taiwan University
Taipei, Taiwan, ROC

Remark: This set of slides comes from my class slides, my research work, slides generously provided by Dr. Jane W.S. Liu,
and class slides contributed by authors of MicroC/OS-II (CMP Book).

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Contents

Overview
A General Architecture of Real-Time/
Embedded Operating Systems
Scheduling Strategies & System
Analysis
Process Synchronization over IPC
Handling of Sporadic Events
Summary

2

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Overview
The Purposes of Operating Systems

Convenience
Efficiency

Characteristics of Many Real-Time/
Embedded Applications

More specific in their applications.
More drastic for their failures.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Overview
A Typical Control System Example

Rates - sensors & actuators, peripheral,
control program
Phases - takeoff, cruise, and landing, etc.

sensors

actuators

environment
controlled
process

Task
Executions

Clock

Display

operator

3

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Overview
Potential Timing Hazards:
Loop

…...
Sensor();
……..
computation……
……..
t = time();
SleepTime := ReadyTime + PERIOD - t;
ReadyTime = ReadyTime + PERIOD;
Sleep(SleepTime);

EndLoop;

Loop
Size?

Time
Elapsed
Here?

Timer Granularity?

Real Sleep
Time?

???Multiprogramming???

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Overview

General Concerns:
Could I verify the performance of my
system?
How to avoid timing hazards?
Is there any good way in scheduling
processes or allocating resources?

Understand your operating system
and hardware, and use resources
intelligently!

4

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Contents

Overview
A General Architecture of Real-Time/
Embedded Operating Systems
(RTOS’s)
Scheduling Strategies & System
Analysis
Process Synchronization over IPC
Handling of Sporadic Events
Summary

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

A General Architecture of RTOS’s
Various Requirements

Predictability – Verifiability
Reliability – Strictness of Deadline
Violations
Reconfigurability – System Size and
Functionality
Efficiency of System Components – Time
Granularity, Threads, and Resource
Management
Variable Models of Task Communication –
Characteristics of Applications

5

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

A General Architecture of RTOS’s

Objectives in the Design of Many
RTOS’s

Efficient Scheduling Mechanisms
Good Resource Management Policies
Predictable Performance

Common Functionality of Many RTOS’s
Task Management
Memory Management
Resource Control, Including Devices
Process Synchronization

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

A General Architecture

Bottom
Half

Top
Half

processesUser
Space

OS

hardware

Timer expires to
• Expire the running process’s

time quota
• Keep the accounting info

for each process

System calls such as I/O requests
which may cause the releasing
CPU of a process!

Interrupts for Services

6

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

A General Architecture
2-Step Interrupt Services

Immediate Interrupt Service
Interrupt priorities > process priorities
Time: Completion of higher priority ISR,
context switch, disabling of certain
interrupts, starting of the right ISR
(urgent/low-level work, set events)

Scheduled Interrupt Service
Usually done by preemptable threads

Remark: Reducing of non-preemptable
code, Priority Tracking/Inheritance
(LynxOS), etc.

ISR

I

Interrupt/ISR
 Latency

Secheduled
Service

IST Latency

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

A General Architecture

Scheduler
A central part in the kernel
The scheduler is usually driven by a
clock interrupt periodically, except
when voluntary context switches
occur – thread quantum?

Timer Resolution
Tick size vs Interrupt Frequency

10ms? 1ms? 1us? 1ns?
Fine-grained hardware clock

7

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

A General Architecture – Time
Granularity

Clock
interrupts

Expiration times

Timer expiration is detected!

Timeout detected

Timer DPCs

For example, the timer granularity is equal to
1 ms or larger:

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

A General Architecture – For More
Deterministic Periodicity

Your timer
settings

Timer
interrupts

Starts of
periods

0 1 2 3 4 5 6

0 1 2 3 4,5 6

Set the timer resolution to x.
Round off all of timeout intervals to integer
multiples of x!

8

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Performance (time stamp) counter drifts.
Counters on different processors are not
synchronized.
A thread reads the counter on the
processor where it executes.

Consistent time stamps =
Readings of the same counter!

A General Architecture – Timer

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

A General Architecture

Memory Management
No protection for many embedded
systems
Memory-locking to avoid paging

Process Synchronization
Sources of Priority Inversion

Nonpreemptible code
Critical sections

A limited number of priority levels, etc.

9

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Contents

Overview
A General Architecture of Real-Time/
Embedded Operating Systems
(RTOS’s)
Scheduling Strategies & System
Analysis
Process Synchronization over IPC
Handling of Sporadic Events
Summary

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Scheduling Strategies &
System Analysis

Why a process in my application does
not meet its deadline?
Factors:

Impacts from the executions of higher-
priority processes – preemption cost
Lengthy execution time of the process
Blocking time from lower-priority
processes – priority inversion

10

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Scheduling Strategies &
System Analysis

Possible Questions:
How do I assign priorities to processes?
How are my processes scheduled by the
OS?
How long is the blocking time/non-
preemptable critical sections (from lower-
priority processes or interrupts)?

Understand your schedulers
Fixed-Priorities or Dynamic Priorities
Preemptive or Non-Preemptive Scheduling

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Scheduling Strategies & System
Analysis Scheduling Strategy

Major Components of a Scheduler
Priority Assignment Policy

The number of priority levels, e.g., 256?
Aging Effects?

Priority-Driven Scheduling Mechanism
Priority Queue
Thread Quantum?
Preemption Lock – Disabling of
Preemption
etc.

11

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Introduction to Real-Time Process
Scheduling

Q: Many theories and algorithms in real-time
process scheduling seem to have simplified
assumptions without direct solutions to
engineers’ problems. Why should we know
them?
A:

Provide insight in choosing a good
system design and scheduling algorithm.
Avoid poor or erroneous choices.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Popular Process Model
Periodic process

each periodic process arrives at a regular frequency -
a special case of demand.

r: ready time, d: relative deadline, p: period, c:
maximum computation time.

For example, maintaining a display
Sporadic process

An aperiodic process with bounded inter-arrival time p.
For example, turning on a light

Other requirements and issues:
process synchronization including precedence and
critical sections, process value, etc.

12

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Performance Metrics
Metrics for hard real-time processes:

Schedulability, etc.
Metrics for soft real-time processes:

Miss ratio
Accumulated value
Response time, etc.

Other metrics:
Optimality, overload handling, mode-
change handling, stability, jitter, etc.
Combinations of metrics.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Basic Definitions
Preemptive scheduling: allows process preemptions. (vs
non-preemptive scheduling)
Online scheduling: allocates resources for processes

depending on the current workload. (vs offline scheduling)
Static scheduling: operates on a fixed set of processes and

produces a single schedule that is fixed at all time. (vs dynamic
scheduling)
Firm real-time process: will be killed after it misses its

deadline. (vs hard and soft real-time)
Fixed-priority scheduling: in which the priority of each

process is fixed for any instantiation. (vs dynamic-priority
scheduling)

13

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Rate Monotonic Scheduling
Algorithm

Assumptions:
all periodic fixed-priority processes
relative deadline = period
independent process - no non-preemptable resources

Rate Monotonic (RM) Scheduling Algorithm
RM priority assignment: priority ~ 1/period.
preemptive priority-driven scheduling.

Example: T1 (p1=4, c1=2) and T2 (p2=5, c1=1)

Time
T1 T2 T1 T2

0 1 2 3 4 5 6 7 8

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Rate Monotonic Scheduling
Algorithm

Critical Instant 1

An instant at which a request of the process have the
largest completion/response time.
An instance at which the process is requested
simultaneously with requests of all higher priority
processes

Usages
Worst-case analysis
Fully utilization of the processor power
Example: T1 (p1=4, c1=2) and T2 (p2=5, c1=1)

1 Liu and Layland, “Scheduling Algorithms for multiprogramming in a hard real-time Environment,” JACM, vol. 20, no. 1, January 1973, pp. 46-61.

Time
T1 T2 T1 T2

0 1 2 3 4 5 6 7 8
T2 T2

14

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Rate Monotonic Scheduling
Algorithm

Schedulability Test:
A sufficient but not necessary condition
Achievable utilization factor α

of a scheduling policy P -> any process set with
total utilization factor no more than α is
schedulable.

Given n processes, α =
Stability:

Let processes be sorted in RM order. The ith
process is schedulable if

An optimal fixed priority scheduling algorithm

c

p
i

i

∑

()n n2 11/−

()c

p
ij

j
j

i i≤ −
=∑ 1

12 1/

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Schedulability Tests – A
Sufficient Condition
Theorem 0 [Liu&Layland 73]: A set of n
periodic processes is schedulable if the total
utilization factor of the process set is no larger
than

Theorem 1 [Kuo, et al. 00]: Suppose that Ti-1
is schedulable. Let k be the number of roots in Ti.
If the total utilization factor of Ti is no larger than

then Ti is schedulable.

)12(
1
−nn

)12(
1

−kk

15

60

3

20

5

15

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Schedulability Tests – Effects
of Interrupts

Task Γ1 : C1 =20ms, P1 =100ms, U1=0.2
Task Γ2 : C2 =40ms, P2 =150ms, U2=0.267
Interrupt : Cint=60ms, Pint=200ms, Uint=0.3
Task Γ3 :C3 =20ms, P3 =350ms, U3=0.057

Γ1

Γ2

Γ3

Int

10 100 200 300

Exec with
RM priority

Γ1

Γ2

Γ3

Int

10 100 200 300

Exec with
an Interrupt
priority

The last task
was not
affected!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Schedulability Tests – Effects
of Priority Mapping

Ready Queue

…

Priority-decreasing

0-3
4-7
8-11

proc[i] proc[j]

proc[k]

allproc

zombproc

freeproc

proc[j] …

proc[m] …

proc[n] …

exit()

wait()

Let processes be sorted
in RM order. The ith
process is schedulable if

()() /c

p

c B

p
ij

j

i i

i
j

i i+
+

≤ −
=

−∑ 1

1 12 1

16

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Rate Monotonic Analysis – A
Sufficient & Necessary Condition

Rate Monotonic Analysis (RMA) 2

Basic Idea:
Before time t after the critical instance of process τi, a high

priority process τj may request amount of
computation time.

Formula:

A sufficient and necessary condition and many
extensions...

2 Sha, “An Intorduction to Rate Monotonic Analysis,” tutorial notes, SEI, CMU, 1992

Time

c
t

p
j

j

t

deadline of τi

t

pj

0

for some t in
 { | ,..., ; ,..., / }kp j i k p pj i j= =1 1

() i
i

j
j

ji dt
p
tctW ≤≤

= ∑ =1

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Rate Monotonic Analysis – A
Sufficient & Necessary Condition

A RMA Example:
T1(20,100), T2(30,150), T3(80, 210), T4(100,400)
T1

c1 <= 100
T2

c1 + c2 <= 100 or
2c1 + c2 <= 150

T3
c1 + c2 + c3 <= 100 or
2c1 + c2 + c3 <= 150 or
2c1 + 2c2 + c3 <= 200 or
3c1 + 2c2 + c3 <= 210

T4
c1 + c2 + c3 + c4 <= 100 or
2c1 + c2 + c3 + c4 <= 150 or
....

Time

W3(t)

50 100 150 200

130

150

170

190

210

17

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Rate Monotonic Scheduling
Algorithm

RM was chosen by
Space Station Freedom Project
FAA Advanced Automation System
(AAS)

RM influenced
the specs of IEEE Futurebus+

RMA is widely used for off-line
analysis of time-critical systems.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Earliest Deadline First Scheduling
Algorithm

Assumptions (similar to RM):
all periodic dynamic-priority processes
relative deadline = period
independent process - no non-preemptable resources

Earliest Deadline First (EDF) Scheduling Algorithm:
EDF priority assignment: priority ~ absolute deadline.
i.e., arrival time t + relative deadline d.
preemptive priority-driven scheduling

Example: T1(c1=1, p1=2), T2(c2=2, p2=7)

Time
T1 T2

0 1 2 3 4 5 6 7 8
T1 T1 T1T2 T2

18

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Earliest Deadline First Scheduling
Algorithm

Schedulability Test:
A sufficient and necessary condition
Any process set is schedulable by EDF iff

EDF is optimal for any independent process
scheduling algorithms
However, its implementation has
considerable overheads on OS’s with a fixed-
priority scheduler and is bad for (transiently)
overloaded systems.

c

p
j

j
j

i
≤

=∑ 1
1

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Contents

Overview
A General Architecture of Real-Time/
Embedded Operating Systems
(RTOS’s)
Scheduling Strategies & System
Analysis
Process Synchronization over IPC
Handling of Sporadic Events
Summary

19

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Synchronization & IPC

Why Inter-Process Communication
(IPC)?

Exchanging of Data and Control
Information!

Why Process Synchronization?
Protect critical sections!
Ensure the order of executions!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Synchronization & IPC
Critical Sections: A portion of code must
be treated indivisibly.

To protect shared resources from
corrupting due to race conditions.
Could be implemented by using interrupt
enable/disable, semaphores, events,
mailboxes, etc.

20

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Synchronization & IPC

Common Facility for IPC?
Shared Memory
Message Transmission

Common Facility for Synchronization?
Semaphores
Signals

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Synchronization & IPC
Shared Memory

Characteristics: High
bandwidth and low latency,
but very primitive!
Needs: Ways to
synchronize its access to
avoid racing conditions!

Potential deadlocks/
livelocks/blocking
problems
e.g., semaphores, bakery
algorithm, etc.

flag[i]=TRUE;
while flag[j]

;
…
flag[i]=FALSE;

key=TRUE;
for(swap(lock,key); key==TRUE;)

swap(lock,key) ;
…
lock=FALSE;

Example 1:

Example 2: (initially, lock=FALSE)

Deadlock?

Livelocks?

21

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Synchronization & IPC
Message Transmission

Characteristics: Simple & clean
interface with various extensions: m:m
communication, multi-machines
Needs: A priority-based message
transmission/notification/processing
mechanism

e.g., message priority, non-blocking
library functions, notification of msg
arrivals, servicing order of msgs (with
respect to other threads in the system),
etc.

A B

OS

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Synchronization & IPC
General Concerns:

How to enforce mutual exclusion?
We should not rely on OS scheduling to
avoid race conditions!

How to process critical messages first?
There is a tight coupling between
message processing and OS scheduling!

After all, we want to manage the priority
inversion problem!

How to let critical jobs be done with
minimized interferences from less
important jobs!

22

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Synchronization & IPC

Solutions??
Synchronization Methods
Priority-Driven Resource Scheduling
Support!

Popular Approaches
Semaphore-Based Synchronization?!

Signals are too slow.
Priority Inheritance?!

Ceiling?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Synchronization & IPC – Signals?
The Design of Signal Mechanisms

Inform processes/threads of the
occurrences of exceptions or events

Posting of a signal to a process
An appropriate signal is added to the set
of pending signals for the process.

Delivering within the context of the
receiver

if (sig = CURSIG(p))
postsig(sig)

Signal handlers: user-mode routines

A B

OS

…

23

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Synchronization & IPC – Signals
Questions?

How fast can a signal be delivered?
Complicated actions done by OS

The length of a signal handler?
Signal handlers are executed prior to
returning control to the user code.

Real-Time Support
Application-defined signals
Queuing of signals while being blocked.
Signals are delivered in the priority order.
etc

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Synchronization & IPC – Can we
manage the priority inversion
problem?

What are the sources of priority
inversion?

Synchronization and mutual exclusion
Nonpreemptable regions of code
FIFO of any other non-priority-based
queues
Interrupts
A limited number of priorities

24

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Synchronization & IPC – Can we
manage the priority inversion
problem?

Popular Synchronization Methods
Nonpreemptable Critical Sections
Highest Locker’s Priority
Priority Inheritance
Priority Ceiling

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

1. Nonpreemptible Critical Section
Critical sections are executed at an

“infinitely” high priority!

Synchronization Protocols

τL

τM

τH

Note that τH & τM have no intention to
enter a critical section!

Time

25

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Synchronization Protocols
2. Highest Locker’s Priority Protocol

Execute critical section at the priority of
the highest-priority task that may lock the
semaphore(/resource); higher-priority tasks
may preempt the critical section.

τL

τM

τH

τvH

Note that τvH is no longer blocked by τL

Time

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

3. Basic Inheritance Protocol (BIP) [Sha87]
Execute the critical section at the priority of the

highest-priority task being blocked; higher-priority
tasks may preempt the critical section.

S1τL

τM

τH

τvH

S1

S2

S2

S2

t

blocked

blocked

Time

- Note that τM is no longer blocked until necessary.

- However, system may be deadlocked or have chained
blocking!

Synchronization Protocols

S2S1 & S2

26

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

4. Priority Ceiling Protocol [Sha87]
BIP + a “Priority Ceiling” rule about when to grant

lock requests (see [Sha 87, 90])

S1τL

τM

τH

τvH

S1

S2

S1
blocked Time

- No deadlock & chained blocking at the cost of reducing
the concurrency level of the system.

- Blocked-at-most-once.

Synchronization Protocols

blocked

S1

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Priority Ceiling Protocol
Assumptions:

all periodic fixed-priority processes
relative deadline = period
Non-preemptable resources guarded by
semaphores

Basic Ideas and Mechanisms:
Bound the priority inversions by early blocking of
processes that could cause them, and
Minimize a priority inversion’s length by allowing a
temporary rise in the blocking process’s priority.

Contribution of the Priority Ceiling Protocol
Efficiently find a suboptimal solution with a clever
allocation policy, guaranteeing at the same time a
minimum level of performance.

27

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Priority Ceiling Protocol
Pre-requirements: nested critical sections!
Priority Ceiling Protocol (PCP):

Define a semaphore’s priority ceiling as the
priority of the highest priority process that may
lock the semaphore.
Lock request for a semaphore is granted only if
the requesting process’s priority is higher than
the ceiling of all semaphores concurrently
locked by other processes.
In case of blocking, the task holding the lock
inherits the requesting process’s priority until it
unlocks the corresponding semaphore. (Def:
priority inheritance)

1 Sha, Rajkumar, and Lehoczky, “Priority Inheritance Protocols: an Approach to Real-Time Synchronization,” IEEE Transactions on computers, Vol. 39, No. 9, Sept. 1990, pp. 1,175-1,185.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Priority Ceiling Protocol

A PCP Example: deadlock avoidance

Timeτ1

Timeτ2

S1

t1
attempt to lock S2

S1,S2

t2

S1

t4

priority inheritance
unlock S1 and reset priority

S2 S1,S2

t6 t7

28

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Priority Ceiling Protocol

A PCP Example: avoid chain blocking

Timeτ0

Timeτ1

Timeτ2

S1

t1
attempt to lock S2

S1

t2

attempt to lock S2

S1

t3

t4

priority inheritance

S2

unlock S1 and reset priority

S2 S1,S2

t5 t6

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Priority Ceiling Protocol

A PCP Example: one priority inversion

Timeτ0

Timeτ1

Timeτ2

S1

t1
attempt to lock S2

S1,S2

t2

attempt to lock S1

S1

t3

t4

priority inheritance

S1

unlock S1 and reset priority

t5

S2 S1,S2

t6 t7

29

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Priority Ceiling Protocol
Important Properties:

A process is blocked at most once before it
enters its critical section.
PCP prevents deadlocks.

Schedulability Test of τi
worst case blocking time Bi - an approximation!

Let processes be sorted in the RM priority
order

–– BSi = { τj | j > i & Max(s in Sj) (ceiling(s)) >= priority(τi)}
– Bi = Max(τj in BSi) |critical section|

– Sj = { S | semaphore S is accessed by τj }

()() /c

p

c B

p
ij

j

i i

i
j

i i+
+

≤ −
=

−∑ 1

1 12 1

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Priority Ceiling Protocol

Variations of PCP:
Stack Resource Policy - not permitted to
start unless resources are all available.

multi-units per resource
dynamic and fixed priority assignments

Dynamic Priority Ceiling Protocol
extend PCP into an EDF scheduler.

2 Baker, “Stack-Based Scheduling of Real-Time Processes,” J. Real-Time Systems, Vol. 3, No. 1, March 1991, pp. 67-99.
3 Chen and Lin, “Dynamic Priority Ceilings: A Concurrency Control Protocol for Real-time Systems,” J. Real-Time Systems, Vol. 2, No. 4, Nov. 1990, pp. 325-340.

30

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Summary of Synchronization
Methods

YesYesPriority Ceiling

NoBoundedPriority Inheritance

YesYesHighest Locker’s
Priority

YesYesNon-preemptible
Critical Section

Deadlock
Avoidance

Blocked
at Once

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Remarks on Priority Inversion

Symmetric Multi-Processor (SMP)
Hyperthreading
Deferred Procedure Call (DPC)

31

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Priority Inversion in SMP

Threads Processors

Find-ready-thread function may not
select the highest priority thread!
Ready-thread function may not
preempt the lowest priority thread!

Guarantee: The highest priority thread
runs immediately after it becomes ready.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Process Inversion on
Hyperthreading Processors

Systems with hyperthreading is not
equivalent to those with SMP!!
Threads might share components!

32

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

DPC: Deferred Procedure Call
(Similar to tasklets in Linux)

ISRs

DPCs

Dispatcher

Interrupts

Processors

DPC queues

P1 P2

On P1 On P2

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Threaded (Preemptive) DPC

On each processor, there are:

Normal
DPC’s

Threaded
DPC’s

Executed nonpreemptively
ahead of threads

Executed by a dedicated
thread for the processor

Initialize each DPC either as a normal DPC
or a threaded DPC.
Use a new set of spinlock functions for
threaded DPC’s.

33

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Contents

Overview
A General Architecture of Real-Time/
Embedded Operating Systems
(RTOS’s)
Scheduling Strategies & System
Analysis
Process Synchronization over IPC
Handling of Sporadic Events
Summary

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Scheduling Aperiodic Tasks
– Polling ~ Average Response Time = 50 units

99

100

– Interrupt Handler ~ Average Response Time = 1 unit

100

– Deferrable Server [Lehoczky87] ~ Average Response Time = 1 unit

1000

0

0

An on-demand service type
When execution budget is used up, server execution drops to a lower
(background) priority until the budgeted execution time is replenished.

34

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Polling Services – Modeling of
Sporadic Processes

Lemma 3[Mok, RTSS84]: Suppose we replace every
sporadic process τi = (ci, pi, di) with a periodic process
τ'i = (c'i, p'i, d'i) with c'i = ci , p'i = min(pi , (di – ci + 1)),
and d'i = ci . If the result set of all periodic processes
can be successfully scheduled, then the original set of
processes can be scheduled without a priori knowledge
of the request times of the sporadic processes.

Proof.

Time

p'i = di – ci + 1

1 ci

di

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

In general, we can replace each sporadic process
τi = (ci, pi, di) with a periodic process τ'i = (c'i,
p'i, d'i) if the following conditions are satisfied:
[Mok, RTSS84]

(1) d ≥ d' ≥ c;
(2) c' = c;
(3) p' ≤ d - d' + 1

Proof.

Time

p' = d – d' + 1

1 d'

d

Polling Services – Modeling of
Sporadic Processes

35

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Deferrable Server (DS) [Lehoczky87]

τ1 as a DS server to preserve CPU bandwidth
for a collection of aperiodic tasks.
τ1 has an entire period to use its C run-time
and gets replenished at the beginning of each
of its period.
Theorem 3 [Lehoczky87]: For τ1 as the highest priority
DS server, and τ2 … τn as periodic tasks, the
achievable utilization factor is

When U is minimized to 0.6518 when U1 = 0.186.
J.P. Lehoczky, L. Sha, and J.K. Strosnider, “Enhancd Aperiodic Responsiveness in Hard Real-Time Environment,” RTSS’87, pp261-270.

]1)
1
2)[(1()1/(1

1

1
1 −

+
+

−+= −n

U
UnUU

∞→n
)

12
2ln(1

1

1

+
+

+=
U

UUU

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Remarks:
– Deferrable Servers:

–fixed execution budget
–replenishment interval
–priority adjusted to meet requirements.
Note that the response time performance improves as the
replenishment rate decreases because the execution budget
increases and more services can be provided.

– Polling:
–From the scheduling point of view, polling converts the servicing of
aperiodic events into an “equivalent” periodic tasks.

–Not an on-demand service type.
–As the rate of polling increases, the response time for polling
approach improves.

– The rationale behind aperiodic servers:
–No “system” benefit to finish periodic work early!

36

Sporadic Server [Sprunt et. al. 90]

Modeled as periodic tasks

fixed execution budget(c)
replenishment interval (p)

5 5 5

0 100 200 300

Execution
Budget

P=100ms 100ms
Replenishment occurs one “period” after the start of
usage !

Priority adjusted to meet requirements.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

A sporadic server differs from a
deferrable server in its replenishment
policy:

A 100 msec deferrable server replenishes
its execution budget every 100 msec , no
matter when the execution budget is used.

The affect of a sporadic server on lower
priority tasks is no worse than a periodic
task with the same period and execution
time.

Sporadic Server [Sprunt et. al. 90]

37

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Sporadic Server [Sprunt et. al. 90]

A sporadic server (SS) under the fixed-
priority scheduling framework.
Terms:

Ps: the priority at which the system is executing.
Pi: one priority level in the system.
Active: A priority level Pj is active is Pj <= Ps.
Idle: not active
RTi: replenishment time for SS executing at priority
level Pi

Brinkley Sprunt, “Aperiodic Task Scheduling for Real-Time Systems,” Ph.D. Thesis
Dept. of Electrical and Computer Engineering, Carnegie Mellon University, August 1990.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Rules:
Replenishment Time RTi

• If SS has execution time available, and Pi
becomes active at time t, then RTi = t + Pi.

• If SS’s execution time is exhausted, and SS’s
execution time becomes non-zero (is replenished)
at time t and Pi is active, then RTi = t + Pi.

Replenishment Amount
• Determined when Pi becomes idle or SS’s

execution time has been exhausted.
• The amount is equal to the amount of server

execution time consumed since the last time at
which the status of Pi changes from idle to active.

Sporadic Server [Sprunt et. al. 90]

38

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Important theorems:
Theorem 1 [Sprunt90:p28]:Given a real-time
system composed of soft-real-time aperiodic tasks
and hard real-time periodic tasks, let the soft real-time
aperiodic tasks be serviced by a polling server that
starts at full capacity and executes at the priority level
of the highest priority periodic task. If the polling
server is replaced with a sporadic server having the
same period, execution time, and priority, the
sporadic server will provide high-priority aperiodic
service at times earlier than or equal to the times the
polling server would provide high-priority aperiodic
service.

Sporadic Server [Sprunt et. al. 90]

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Theorem 5 [Sprunt90:p34]: A periodic task set
that is schedulable with a periodic task Ti, is also
schedulable if Ti is replaced by a sporadic server
with the same period and execution time.
Schedulability analysis of sporadic servers is
equivalent to periodic tasks! -> overcome the
penalty paid by the deferrable servers!
Remark

In terms of server size, the sporadic server approach is better
than the deferrable server approach.
Although the sporadic server approach claims low
implementation overhead, it seems to be a little bit higher than
the deferrable server approach.
If aperiodic services are requested very heavily , the differences
between DS and SS will diminish.

Sporadic Server [Sprunt et. al. 90]

39

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

A Sporadic Server Example

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Contents

Overview
A General Architecture of Real-Time/
Embedded Operating Systems
(RTOS’s)
Scheduling Strategies & System
Analysis
Process Synchronization over IPC
Handling of Sporadic Events
Summary

40

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Some Ways to Better Predictability

Eliminate major causes of unpredictability.
(Poor hardware and drivers may block
threads for a few hundred milliseconds.)
Statically configure real-time components.
Minimize the need for priority tracking
across components and layers.
Use synchronization protocols to control
priority inversion.
Verify drivers and applications.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Summary

Understand your operating
systems and hardware!
There is no substitute for
intelligent resource allocation
methods!

41

Remarks on Multiprocessor
Scheduling
郭大維教授

ktw@csie.ntu.edu.tw
即時暨嵌入式系統實驗室

(Real-Time and Embedded Systems Laboratory)
國立臺灣大學資訊工程系

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Preemptive Multiprocessor Scheduling
Theorems of Mok in 1983

Goal:Understand the limitations of EDF.
Conditions:

different ready times.
Theorem 0: Earliest-deadline-first scheduling
is not optimal in the multiprocessor case.
Example, T1(c=1,d=1), T2(c=1,d=2), T3(c=3,d=3.5), two
processors.
Theorem 1: For two or more processors, no
deadline scheduling algorithm can be optimal
without complete a priori knowledge of deadlines,
computation times, and process start times.

A.K. Mok, “Fundamental Design Problems of Distributed Systems for the Hard Real-Time Environment,” Ph.D. Thesis, Dept. of Electrical Engineering and Computer science, MIT, May 1983.

42

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Multiprocessor Anomalies
Theorem of Graham in 1976.

Goal:Notice anomaly and provide better design.
Conditions;

A set of processes is optimally scheduled on a
multiprocessor with some priority order, fixed execution
times, precedence constraints, and a fixed number of
processors.

Theorem 0: For the stated problem, changing
the priority list, increasing the number of
processors, reducing execution times, or
weakening the precedence constraints can
increase the schedule length.

R. Graham, “Bounds on the Performance of Scheduling Algorithms,” Computer and Job Shop Scheduling theory, E.G. Coffman, ed., John Wiley and Sons, 1976, pp. 165-227.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2002.

Multiprocessor Anomalies

An Example

P1

P2

P1

P2

