

(cont.)			
Process ZS			
activated by z;			
attribute deadline=80, period=default;			
z = sensor z();			
$z' = f_z(y);$			
rendezvous S;			
end ZS			
☞ monitor S			
$u = f_s(x', y', z', v);$			
end S			
<i>∞</i> monitor K			
$\mathbf{v} = \mathbf{f}_k(\mathbf{x}^2, \mathbf{y}^2, \mathbf{z}^2, \mathbf{v});$			
end K			
Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.			

Comparison of Decomposition strategies

	By Timing constraint	By minimizing communication	By Maximizing Parallelism
Processor Speed Requirement	Higher	1*	Lower
Communication Bandwidth Requirement		Lower	Higher
Ease of Understanding	Good	Poor	
Ease of Modification		Poor	2*

1* Less locking problems, more efficient utilization of processor power.

2* Additional timing constraint may not involve any change in program, but it may require more difficult analysis !

A static schedule L is feasible with respect to a set of asynchronous timing constraints T_a iff L has a latency of d time units with respect to every timing constraint (c, p, d) ∈ T_a

Theorem [Mok 85] If there is an execution trace which has latency d with respect to every asynchronous timing constraint in a graphbased model (G,T), then there must be a feasible static schedule (finite by definition) with respect to $T_a \in T$.

Theorem [Mok 85] The problem of determining whether a feasible static schedule exists for a graph-based model (G,T) is NP-hard in the strong sense for the following two restricted cases:

- (i) All the functional elements in G have unit computation time and all the task graphs in T are chains of length 1 or 3.
- (ii) Every task graph in T consists of a single operation; all but one of the deadlines are the same and the functional elements cannot be pipelined into chains of subfunctions.

