
1

郭大維教授
ktw@csie.ntu.edu.tw

即時暨嵌入式系統實驗室

(Real-Time and Embedded Systems Laboratory)

國立臺灣大學資訊工程系

System Synthesis

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Paper for discussion:
Aloysius K. Mok, “A Graph-Based Computation
Model for Real-time Systems,” IEEE Proceedings
of The International Conference on Parallel
Processing, 1985.

Major Reference:
Aloysius K. Mok, “Fundamental Design Problems
of Distributed Systems for the Hard-Real-Time
Environment,” Ph.D. Thesis, MIT, 1983.

2

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

The Problem:
The Efficiency vs. Maintainability

Dichotomy

Want

Performance

Implementation
Dependency

Implementation
Dependency

Want

Design Complexity

Highly optimized code is hard to read. It often involves too
many coding tricks!!
Real systems are often compromise between structured design
and efficiency hacks.
But, compromise may not be possible for many time-critical
systems.

Is there a way out of this dilemma ?

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Software Technology Paradigms
Current Practice

User
Requirements

Requirements
Analysis

Informal
Specification

Coding

Tuning

Less than
efficient program

3

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Software Technology Paradigms (cont.)
The way to Go ?

User
Requirements

Requirements
Analysis

Formal
Model

Automation
Tools

Concrete
ProgramEnd UserUser

Feed Back

Designer

How do we get from here to there ??

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

A Software Automation Strategy:

Capture the computational requirements of the
application domain in terms of an appropriate model.
Translate requirements specifications into an instance
of the domain-specific model for resource allocation
analysis.
Solve the well-defined optimization problems to
minimize chosen cost/risk criteria.

4

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

An example:
A control system function block diagram

fx

fy

fk

fs

fz

y

x

y'

x' z'

z

v

u

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

An example (cont.)

System Requirements
Sample x at rate 1/Px per sec update u. Then update v
with the new value of u.
Sample y at rate 1/Py per sec update u. Then recompute v
with the new value of u.
When z changes state, update u within dz sec. The output
signal u must also be recomputed before dz.

Let’s try some parameters:
Px = 80 dz = 80
Py = 160 dy = 160
cx = cy = cz = cs = ck = 10

5

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Problem:

Translate user requirements into a set of processes ?!!

But,
English is too informal !

We need a more precise language which must also
be natural to the application domain !

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

A Graph-Based Model M
M = (G, T)

G is the communication graph.
(A digraph with vertex and edge weights)
T = TP + TA is a set of timing constraints. A timing
constraint is a tuple (C, r, d, p)

C is a task graph that must be compatible with G.

r is the ready time
d is the deadline
p is the period/minimum separation

The “computation time” of a timing constraint (C, r, d, p)
is the sum of the weights of the vertices of C.

GvhuhCvuv,u
GvhCvv,

 h

∈→∈∀
∈→∈∀

∃

))(),((),(,
)(

s.t. mapping a

6

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

T = TP + TA
TP is the set of periodic timing constraint.

Periodic timing constraints are invoked at fixed intervals:
kp + phasing, k=0,1,…

TA is the set of asynchronous timing constraint.
Asynchronous timing constraints are invoked at arbitrary
times,but two successive invocations must be separated by p
time units.

A task graph C is said to be executed in the interval [t1, t2] if
there is a multiset of functional element (vertices) executions
in [t1, t2] which is consistent with the partial ordering C.

In a distributed environment, edges in C denote transmission of
information from one functional element to another.

aIf a timing constraint is invoked at time t, it must be
executed in [t + r, t + d].

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Communication Graph

Timing Constraints

z

fx

fy

x

y

fz

fs

fk

x’

y’

z’
u

uv

type = periodic
period = 80
deadline = 80fx

x fs
x’

z’
u fk

u

vy’

C1

7

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

type = periodic
period = 160
deadline = 160fy

y fs
y’

z’
u fk

u

vx’

C2

type = asynchronous
period = default

(or pz if known)
deadline = 80

fz
z fs

z’
v

u
u

y’x’

C3

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Our job:
Given a graph-based specification of a real-time system,
output a set of processes (programs).

A process-based language (programming model)
Process declaration:

Process <Name>
activated by (<signal>|Timer)
<Body>

End
Synchronization (precedence) constraints are enforced by:

Rendezvous <Process>
Mutual Exclusion constraints are enforced by:

Rendezvous <monitor>
A monitor is declared by:

Monitor <Name>
<Body>

End

8

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Decomposition Strategies
Decomposition By Critical Timing Constraints (CTC)

Use a process for each timing constraint.
Process XSK

activated by timer;
attribute period=80, deadline=80;
x = sensor_x();
x’ = fx(x);
rendezvous S;
redezvous K;

end XSK
Process YSK

activated by timer;
attribute period=160, deadline=160;
y = sensor_y();
y’ = fy(y);
rendezvous S;
rendezvous K;

end YSK (cont.)

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Process ZS
activated by z;
attribute deadline=80, period=default;
z = sensor_z();
z’ = fz(y);
rendezvous S;

end ZS

monitor S
u = fs(x’, y’, z’, v);

end S

monitor K
v = fk(x’, y’, z’, v);

end K

(cont.)

9

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

XSKYSKZSXSK XSKYSK

0 40 80 120 160 200 Time

Strength:
Straightforward: easy to understand.
Maintainability is high!

However, the unnecessary duplication of some
computation is serious.

Throwing away duplicates may make the
sampling of x and y at a higher rate!

px = 60, py = 120
(old px = 80, py = 160)

XYSK XS K XYSK K

0 40 80 120 160 200 Time60

ZSXS

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

1. Partition the computation required by the timing constraints
into sets such that
(i) Only compatible timing constraints are assigned to the

same set, and
(ii) Only timing constraints that share some of the

function calls are assigned to the same set
2.The computation in each set is assigned to a periodic process

whose period attribute is set to the GCD of the periods in the
set.
＊Each asynchronous timing constraint is assigned to a

sporadic process as before.

Decomposition By Centralizing Concurrency Control (CCC)
on Minimizing Interprocess Communication

10

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

＊Pre-period deadlines need priori analysis or…
Merge XSK and YSK

Process XYSK
activated by timer;
attribute period=80, deadline=80;
x = sensor_x();
x’ = fx(x);
if skip_y() == FALSE then { y = sensor_y();

y’ = fy(y); }
rendevous S;
v = fk(u);

end XYSK

XYSKZS XSK

0 40 80 120 160 200 Time
XYSK

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Strength:
Efficiency is improved by eliminating substantial redundant
computation!
With fewer processes and more independent process, less inter
process communication may be required!

However, maintainability becomes more difficult!
Suppose Cy = 40ms

Use two-stage pipeline implementation!

It works!
However, the control logic adopted in XYSK implements
internal scheduling decisions and make itself very
sensitive to system parameters, e.g. “workload”.
Maintainability becomes nightmares for programmers.

XY1Y1SKZS K K

0 40 80 120 160 200 Time
XY2Y2S XY1Y1S

11

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Partition the required computation into as many process as
possible so as to maximize parallelism !
＊In general, if a node is involved in the computation required by one

or more periodic timing constraints, the process assigned to the
node has a period equal to GCD of periods of relevant timing
constraint !

＊Each asynchronous timing constraint is assigned a sporadic process
which contains appropriate function calls.

=> Periodic processes must synchronize with processes which precede
it and which it precedes !

1 x x x
2 Y Y

3 S S S

4 K K

5 Z

S

TIME

X and Y can be even sampled at rates 30 and 60, respectively!!

processor

20 60 8040

Decomposition By Distribution Concurrency Control
(DCC) or Maximizing Concurrent Process

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

2*PoorEase of
Modification

PoorGoodEase of
Understanding

HigherLowerCommunication
Bandwidth
Requirement

Lower1*1*HigherProcessor Speed
Requirement

By Maximizing
Parallelism

By minimizing
communication

By Timing
constraint

1* Less locking problems, more efficient utilization of processor power.
2* Additional timing constraint may not involve any change in program,

but it may require more difficult analysis !

Comparison of Decomposition strategies

12

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Latency Scheduling
An execution trace of a processor is a mapping F from the non-
negative integers to the set of nodes in a communication graph G
plus a null symbol φsuch that

F(i) = u if u is executed in the time internal [i, i+1]
An execution trace F have a latency of K time units with respect
to a timing constraint (c, p, d) iff F contains an execution of C in
any time interval of length ≥ K.

A static schedule L has a latency of K time units with respect to
the timing constraint (c, p, d) iff the execution trace which a
“ round-robin “ scheduler generates by repeating L ad infinitum
has a latency of K time units with respect to (c, p, d)

Another way to meet timing constraints:

x y z s k x y k sz k x y z s k

5

6

F

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

A static schedule L is feasible with respect to a set of
asynchronous timing constraints Ta iff L has a latency
of d time units with respect to every timing constraint
(c, p, d) Ta

Theorem [Mok 85] If there is an execution trace which has latency
d with respect to every asynchronous timing constraint in a graph-
based model (G,T), then there must be a feasible static schedule
(finite by definition) with respect to Ta T .
Theorem [Mok 85] The problem of determining whether a
feasible static schedule exists for a graph-based model (G,T) is
NP-hard in the strong sense for the following two restricted cases:

(i) All the functional elements in G have unit computation time and all
the task graphs in T are chains of length 1 or 3.

(ii) Every task graph in T consists of a single operation; all but one of
the deadlines are the same and the functional elements cannot be pipelined

into chains of subfunctions.

∈

∈

13

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Cluster all timing constraints into a single periodic process:
Porcess XYZSK

activated by timer;
attribute period = 50, deadline = 50;
x = sensor_x();
x' = fx(x)
If skip_Y() = FALSE THEN { y=sensor_y(); y' =fy(y)}
If skip_Z() = FALSE THEN { z=sensor_z(); z' =fz(z)}
u = fx (x', y', z', v);
v = fk(u);

end XYZSK

0 50 100 150
X Y Z S K X Z S K X Y Z S K Time

X can be sampled at a rate 1/50 cycles/ms !

Theorem [Mok 85] Let wi , di be the computation time and
deadline of the ith timing constraint. If (i) ;
and (ii) ; and (iii) all the functional elements can be
pipelined, then a feasible static schedule always exists.

2
1

≤∑
i

i

d
w

i
i wd
≥

2

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

There is no best decomposition algorithm for all
architectures ! We still have to tune !

More fundamental problem with process-based models:
A process serves conflicting goals.

As a unit for processor scheduling.
As a unit to enforce integrity constraints.
As a unit to organize computation to meet a goal.

A good decomposition strategy must consider all
three goals !

Process models, being abstractions of Von Neuman type
machines may be an artificial architectural constraint!

