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The Problem:
The Efficiency  vs.  Maintainability

Dichotomy

Want

Performance

Implementation 
Dependency

Implementation 
Dependency

Want

Design Complexity

Highly optimized code is hard to read. It often involves too 
many coding tricks!!
Real systems are often compromise between structured design 
and efficiency hacks.
But, compromise may not be possible for many time-critical 
systems.

Is there a way out of this dilemma ?
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Software Technology Paradigms
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Software Technology Paradigms (cont.)
The way to Go ?

User
Requirements

Requirements
Analysis

Formal
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Automation
Tools

Concrete
ProgramEnd UserUser

Feed Back

Designer

How do we get from here to there ??
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A Software Automation Strategy:

Capture the computational requirements of the 
application domain in terms of an appropriate model.
Translate requirements specifications into an instance 
of the domain-specific model for resource allocation 
analysis.
Solve the well-defined optimization problems to 
minimize chosen cost/risk  criteria.
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An example:
A control system function block diagram
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An example (cont.)

System Requirements
Sample x at rate 1/Px per sec update u. Then update v
with the new value of u.
Sample y at rate 1/Py per sec update u. Then recompute v
with the new value of u.
When z changes state, update u within dz sec. The output 
signal u must also be recomputed before dz.

Let’s try some parameters:
Px = 80 dz = 80
Py = 160 dy = 160
cx = cy = cz = cs = ck = 10
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Problem:

Translate user requirements into a set of processes ?!!

But,
English is too informal !

We need a more precise language which must also 
be natural to the application domain !
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A Graph-Based Model M
M = (G, T)

G is the communication graph.
(A digraph with vertex and edge weights)
T = TP + TA is a set of timing constraints. A timing 
constraint is a tuple (C, r, d, p)

C is a task graph that must be compatible with G.

r is the ready time
d is the deadline
p is the period/minimum separation

The “computation time” of a timing constraint (C, r, d, p) 
is the sum of the weights of the vertices of C.
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T = TP + TA
TP is the set of periodic timing constraint.

Periodic timing constraints are invoked at fixed intervals:
kp + phasing, k=0,1,…

TA is the set of asynchronous timing constraint.
Asynchronous timing constraints are invoked at arbitrary 
times,but two successive invocations must be separated by p 
time units.

A task graph C is said to be executed in the interval [t1, t2] if 
there is a multiset of functional element (vertices) executions 
in [t1, t2] which is consistent with the partial ordering C.

In a distributed environment, edges in C denote transmission of 
information from one functional element to another.

aIf a timing constraint is invoked at time t, it must be 
executed in [t + r,  t + d].
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Communication Graph

Timing Constraints
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Our job:
Given a graph-based specification of a real-time system, 
output a set of processes (programs).

A process-based language (programming model)
Process declaration:

Process <Name>
activated by (<signal>|Timer)
<Body>

End
Synchronization (precedence) constraints are enforced by:

Rendezvous <Process>
Mutual Exclusion constraints are enforced by:

Rendezvous <monitor>
A monitor is declared by:

Monitor <Name>
<Body>

End



8

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Decomposition Strategies
Decomposition By Critical Timing Constraints (CTC)

Use a process for each timing constraint.
Process XSK

activated by timer;
attribute period=80, deadline=80;
x = sensor_x();
x’ = fx(x);
rendezvous S;
redezvous K;

end XSK
Process YSK

activated by timer;
attribute period=160, deadline=160;
y = sensor_y();
y’ = fy(y);
rendezvous S;
rendezvous K;

end YSK (cont.)
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Process ZS
activated by z;
attribute deadline=80, period=default;
z = sensor_z();
z’ = fz(y);
rendezvous S;

end ZS

monitor S
u = fs(x’, y’, z’, v);

end S

monitor K
v = fk(x’, y’, z’, v);

end K

(cont.)
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XSKYSKZSXSK XSKYSK

0 40 80 120 160 200 Time

Strength:
Straightforward: easy to understand.
Maintainability is high!

However, the unnecessary duplication of some 
computation is serious.

Throwing away duplicates may make the 
sampling of x and y at a higher rate!

px = 60, py = 120
(old px = 80, py = 160)

XYSK XS K XYSK K

0 40 80 120 160 200 Time60

ZSXS

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

1. Partition the computation required by the  timing constraints
into sets such that
(i)  Only compatible timing constraints are assigned to the 

same set, and
(ii) Only timing constraints that share some of the   

function calls are assigned to the same set
2.The computation in each set is assigned to a periodic process 

whose period attribute is set to the GCD of the periods in the 
set.
＊Each asynchronous timing constraint is assigned to a 

sporadic process as before.

Decomposition By Centralizing Concurrency Control (CCC) 
on Minimizing Interprocess Communication
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＊Pre-period deadlines need priori analysis or…
Merge XSK and YSK

Process XYSK
activated by timer;
attribute period=80, deadline=80;
x = sensor_x();
x’ = fx(x);
if skip_y() == FALSE then { y = sensor_y();

y’ = fy(y); }
rendevous S;
v = fk(u);

end XYSK

XYSKZS XSK

0 40 80 120 160 200 Time
XYSK
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Strength:
Efficiency is improved by eliminating substantial redundant 
computation!
With fewer processes and more independent process, less inter 
process communication may be required!

However, maintainability becomes more difficult!
Suppose Cy = 40ms

Use two-stage pipeline implementation!

It works!
However, the control logic adopted in XYSK implements 
internal scheduling decisions and make itself very 
sensitive to system parameters, e.g. “workload”. 
Maintainability becomes nightmares for programmers.

XY1Y1SKZS K K

0 40 80 120 160 200 Time
XY2Y2S XY1Y1S
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Partition the required computation into as many process as 
possible so as to maximize parallelism !
＊In general, if a node is involved in the computation required by one 

or more periodic timing constraints, the process assigned to the 
node has a period equal to GCD of periods of relevant timing 
constraint !

＊Each asynchronous timing constraint is assigned a sporadic process 
which contains appropriate function calls.

=> Periodic processes must synchronize with processes which precede 
it and which it precedes !

1 x x x
2 Y Y

3 S S S

4 K K

5 Z

S

TIME

X and Y can be even sampled at rates 30 and 60, respectively!!

processor

20 60 8040

Decomposition By Distribution Concurrency Control 
(DCC) or Maximizing Concurrent Process
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2*PoorEase of 
Modification

PoorGoodEase of 
Understanding

HigherLowerCommunication 
Bandwidth 
Requirement

Lower1*1*HigherProcessor Speed 
Requirement

By Maximizing 
Parallelism

By minimizing 
communication

By Timing 
constraint

1* Less locking problems, more efficient utilization of processor power.
2* Additional timing constraint may not involve any change in program, 

but it may require more difficult analysis !

Comparison of Decomposition strategies



12

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Latency Scheduling
An execution trace of a processor is a mapping F from the non-
negative integers to the set of nodes in a communication graph G
plus a null symbol φsuch that 

F(i) = u if u is executed in the time internal [i, i+1]
An execution trace F have a latency of K time units with respect 
to a timing constraint (c, p, d) iff F contains an execution of C in 
any time interval of length ≥ K.

A static schedule L has a latency of K time units with respect to 
the timing constraint (c, p, d) iff the execution trace which a 
“ round-robin “ scheduler generates by repeating L ad infinitum 
has a latency of K time units with respect to (c, p, d)

Another way to meet timing constraints:

x y z s k x y k sz k x y z s k

5

6

F
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A static schedule L is feasible with respect to a set of 
asynchronous timing constraints Ta iff L has a latency 
of d time units with respect to every timing constraint 
(c, p, d)    Ta

Theorem [Mok 85] If there is an execution trace which has latency 
d with  respect to every asynchronous timing constraint in a graph-
based model (G,T), then there must be a feasible static schedule
(finite by definition) with respect to Ta T .
Theorem [Mok 85] The problem of  determining whether a 
feasible  static schedule exists for a graph-based model (G,T) is 
NP-hard in the strong sense for the following two restricted cases:

(i) All the functional elements in G have unit computation time and all 
the task graphs in T are chains of length 1 or 3.

(ii) Every task graph in T consists of a single operation; all but one of 
the deadlines are the same and the functional elements cannot be pipelined 

into chains of subfunctions.

∈

∈
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Cluster all timing constraints into a single periodic process:
Porcess XYZSK

activated by timer;
attribute period = 50, deadline = 50;
x = sensor_x();
x' = fx(x)
If skip_Y() = FALSE THEN  { y=sensor_y(); y' =fy(y)}
If skip_Z()  = FALSE THEN  { z=sensor_z(); z' =fz(z)}
u = fx (x', y', z', v);
v = fk(u);

end XYZSK

0 50 100 150
X Y Z S K X Z S K X Y Z S K Time

X can be sampled at a rate 1/50 cycles/ms !

Theorem [Mok 85] Let wi , di be the computation time and 
deadline of the ith timing constraint. If  (i) ;          
and (ii) ; and (iii) all the functional elements can be 
pipelined, then a feasible static schedule always exists.
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There is no best decomposition algorithm for all 
architectures !  We still have to tune !

More fundamental problem with process-based models:
A process serves conflicting goals.

As a unit for processor scheduling.
As a unit to enforce integrity constraints.
As a unit to organize computation to meet a goal.

A good decomposition strategy must consider all 
three goals !

Process models, being abstractions of Von Neuman type 
machines may be an artificial architectural constraint!


