A 2-approximation algorithm for the SROCT problem*

Bang Ye Wu Kun-Mao Chao

Problem: Optimal Sum-Requirement Communication Spanning Trees (SROCT)
Instance: A $G=(V, E, w)$ with vertex weight $r: V \rightarrow Z_{0}^{+}$.
Goal: Find a spanning tree T of minimum s.r.c. cost.
Recall that the s.r.c. routing cost of a tree T is defined by $C_{s}(T)=\sum_{u, v}(r(u)+r(v)) d_{T}(u, v)$. Similar to the PROCT problem, the SROCT problem includes the MRCT problem as a special case and is therefore NP-hard. The s.r.c. cost of a tree can also be computed by summing the routing costs of edges. The only difference is the definition of routing load.

Definition 1: Let T be any spanning tree of a graph G, and r a vertex weight function. For any edge $e=(u, v) \in E(T)$, we define the s.r.c. routing load on the edge e to be $l_{s}(T, r, e)=$ $2\left(r\left(T_{u}\right)\left|T_{v}\right|+r\left(T_{v}\right)\left|T_{u}\right|\right)$, where T_{u} and T_{v} are the two subgraphs obtained by removing e from T. The s.r.c. routing cost on the edge e is defined to be $l_{s}(T, r, e) w(e)$.

Lemma 1: Let T be any spanning tree of a graph $G=(V, E, w)$ and r be a vertex weight function. $C_{s}(T)=\sum_{e \in E(T)} l_{s}(T, r, e) w(e)$.

In this section, we focus on the approximation algorithm for an SROCT. For the PROCT problem, it has been shown that an optimal solution for a graph has the same value as the one for its metric closure. In other words, using bad edges cannot lead to a better solution. However, the SROCT problem has no such a property. For example, consider the graph G in Figure 1. The edge (a, b) is not in $E(G)$, and T is a spanning tree of the metric closure of G. All three possible spanning trees of G are Y_{1}, Y_{2} and Y_{3}. It will be shown that the s.r.c cost of T is less than that of Y_{i} for $i=1,2,3$.

To compare the s.r.c costs, we can only focus on the coefficient of k in the cost. Note that only vertices a and x have nonzero weights. By Lemma 1 , the s.r.c. cost of T can be computed as follows:

$$
\begin{aligned}
& C_{s}(T) \\
= & l_{s}(T, r,(a, b)) w(a, b)+l_{s}(T, r,(a, y)) w(a, y)+l_{s}(T, r,(y, x)) w(x, y) \\
= & 2(k(4+1)+0(4 k)) 2+2(k \times 1+4 \times 4 k)(1)+2(5 k \times 1+4 \times 1)(1) \\
= & 64 k+\ldots
\end{aligned}
$$

Similarly we have $C_{s}\left(Y_{1}\right)=66 k, C_{s}\left(Y_{2}\right)=66 k$, and $C_{s}\left(Y_{3}\right)=90 k$. The example illustrates that it is impossible to transform any spanning tree of \bar{G} to a spanning tree of G without increasing the s.r.c cost for some graph G, where \bar{G} is the metric closure of G. But it should be noted that the

[^0]

Y_{1}

Y_{2}

Y_{3}

Figure 1: A tree with bad edges may have less s.r.c. cost. The triangles represent nodes of zero weight and connected by zero-length edges.
example does not disprove the possibility of reducing the SROCT problem on general graphs to its metric version.

We shall present a 2-approximation algorithm for the SROCT problem on general graphs. For each vertex v of the input graph, the algorithm finds the shortest-paths tree rooted at v. Then it outputs the shortest-paths tree with minimum s.r.c. cost. We shall show that there always exists a vertex x such that any shortest-paths tree rooted at x is a 2 -approximation solution.

In the following, graph $G=(V, E, w)$ and vertex weight r is the input of the SROCT problem. We assume that $|V|=n,|E|=m$ and $r(V)=R$.
Lemma 2: Let T be a spanning tree of G. For any vertex $x \in V$,

$$
C_{s}(T) \leq 2 \sum_{v \in V}(n r(v)+R) d_{T}(v, x) .
$$

Proof:

$$
\begin{aligned}
C_{s}(T) & =\sum_{u, v \in V}(r(u)+r(v)) d_{T}(u, v) \\
& \leq \sum_{u, v \in V}(r(u)+r(v))\left(d_{T}(u, x)+d_{T}(x, v)\right) \\
& =2 \sum_{u, v \in V}(r(u)+r(v)) d_{T}(u, x) \\
& \leq 2 \sum_{v \in V}(n r(v)+R) d_{T}(v, x) .
\end{aligned}
$$

In the following, we use T to denote an optimal spanning tree of the SROCT problem, and use x_{1} and x_{2} to denote a centroid and an r-centroid of T respectively. Let $P=S P_{T}\left(x_{1}, x_{2}\right)$ be the path between the two vertices on the tree. If x_{1} and x_{2} are the same vertex, P contains only one vertex.

Lemma 3: For any edge $e \in E(P)$, the s.r.c load $l_{s}(T, r, e) \geq n R$.
Proof: Let T_{1} and T_{2} be the two subtrees resulting by deleting e from T. Assume that $x_{1} \in V\left(T_{1}\right)$ and $x_{2} \in V\left(T_{2}\right)$. By the definitions of centroid and r-centroid, $\left|V\left(T_{1}\right)\right| \geq n / 2$ and $r\left(T_{2}\right) \geq R / 2$. Then,

$$
\begin{aligned}
l_{s}(T, r, e) / 2 & =\left|V\left(T_{1}\right)\right| r\left(T_{2}\right)+\left|V\left(T_{2}\right)\right| r\left(T_{1}\right) \\
& =\left|V\left(T_{1}\right)\right| r\left(T_{2}\right)+\left(n-\left|V\left(T_{1}\right)\right|\right)\left(R-r\left(T_{2}\right)\right) \\
& =2\left(\left|V\left(T_{1}\right)\right|-n / 2\right)\left(r\left(T_{2}\right)-R / 2\right)+n R / 2 \geq n R / 2 .
\end{aligned}
$$

The next lemma establishes a lower bound of the minimum s.r.c. cost. Remember that $d_{T}(v, P)$ denotes the shortest path length from vertex v to path P.

Lemma 4: $\quad C_{s}(T) \geq \sum_{v \in V}(n r(v)+R) d_{T}(v, P)+n R w(P)$.
Proof: For any vertex u, we define $S B(u)$ to be the set of vertices in the same branch of u. Note that $|S B(u)| \leq n / 2$ and $r(S B(u)) \leq R / 2$ for any vertex u by the definitions of centroid and r-centroid.

$$
\begin{align*}
C_{s}(T)= & \sum_{u, v \in V}(r(u)+r(v)) d_{T}(u, v) \\
= & 2 \sum_{u, v \in V} r(u) d_{T}(u, v) \\
\geq & 2 \sum_{u \in V} \sum_{v \notin S B(u)} r(u)\left(d_{T}(u, P)+d_{T}(v, P)\right) \\
& +2 \sum_{u, v \in V} r(u) w\left(S P_{T}(u, v) \cap P\right) . \tag{1}
\end{align*}
$$

For the first term in (1),

$$
\begin{align*}
& 2 \sum_{u \in V} \sum_{v \notin S B(u)} r(u)\left(d_{T}(u, P)+d_{T}(v, P)\right) \\
= & 2 \sum_{u \in V} \sum_{v \notin S B(u)} r(u) d_{T}(u, P)+2 \sum_{u \in V} \sum_{v \notin S B(u)} r(u) d_{T}(v, P) \\
\geq & \sum_{u \in V} n r(u) d_{T}(u, P)+2 \sum_{v \in V} \sum_{u \notin S B(v)} r(u) d_{T}(v, P) \\
\geq & \sum_{u \in V} n r(u) d_{T}(u, P)+\sum_{v \in V} R d_{T}(v, P) \\
= & \sum_{v \in V}(n r(v)+R) d_{T}(v, P) . \tag{2}
\end{align*}
$$

For the second term in (1),

$$
\begin{align*}
& 2 \sum_{u, v \in V} r(u) w\left(S P_{T}(u, v) \cap P\right) \\
= & 2 \sum_{u, v \in V} r(u)\left(\sum_{e \in S P_{T}(u, v) \cap P} w(e)\right) \\
= & \sum_{e \in E(P)}\left(2 \sum_{v} r\left(\left\{u \mid e \in E\left(S P_{T}(u, v)\right)\right\}\right)\right) w(e) \\
= & \sum_{e \in E(P)} l_{s}(T, r, e) w(e) \\
\geq & n R w(P) . \quad(\text { by Lemma } 3) \tag{3}
\end{align*}
$$

The result follows (1), (2), and (3).
The main result of this section is stated in the next theorem.
Theorem 5: There exists a 2-approximation algorithm with time complexity $O\left(n^{2} \log n+m n\right)$ for the SROCT problem.

Proof: Let Y^{*} and $Y^{* *}$ be the shortest-path trees rooted at x_{1} and x_{2} respectively. Also, for any $v \in V$, let $h_{1}(v)=w\left(S P_{T}\left(v, x_{1}\right) \cap P\right)$ and $h_{2}(v)=w\left(S P_{T}\left(v, x_{2}\right) \cap P\right)$. By Lemma 2,

$$
\begin{align*}
C_{s}\left(Y^{*}\right) / 2 & \leq \sum_{v \in V}(n r(v)+R) d_{Y^{*}}\left(v, x_{1}\right) \\
& \leq \sum_{v \in V}(n r(v)+R)\left(d_{T}(v, P)+h_{1}(v)\right) \tag{4}
\end{align*}
$$

Similarly

$$
\begin{equation*}
C_{s}\left(Y^{* *}\right) / 2 \leq \sum_{v \in V}(n r(v)+R)\left(d_{T}(v, P)+h_{2}(v)\right) \tag{5}
\end{equation*}
$$

Since $h_{1}(v)+h_{2}(v)=w(P)$ for any vertex v, by (4) and (5), we have

$$
\begin{aligned}
& \min \left\{C_{s}\left(Y^{*}\right), C_{s}\left(Y^{* *}\right)\right\} \\
\leq & \left(C_{s}\left(Y^{*}\right)+C_{s}\left(Y^{* *}\right)\right) / 2 \\
\leq & \sum_{v \in V}(n r(v)+R)\left(2 d_{T}(v, P)+h_{1}(v)+h_{2}(v)\right) \\
= & \sum_{v \in V}(n r(v)+R)\left(2 d_{T}(v, P)+w(P)\right) \\
= & 2 \sum_{v \in V}(n r(v)+R) d_{T}(v, P)+2 n R w(P) \\
\leq & 2 C_{s}(T) . \quad(\text { by Lemma } 4)
\end{aligned}
$$

We have proved that there exists a vertex x such that any shortest-paths tree rooted at x is a 2 approximation solution. Since it takes $O(n \log n+m)$ time to construct a shortest-paths tree rooted at a given vertex and the s.r.c cost of a tree can be computed in $O(n)$ time, a 2 -approximation solution of the SROCT problem can be found in $O\left(n^{2} \log n+m n\right)$ time by constructing a shortestpaths tree rooted at each vertex and choosing the one with minimum s.r.c cost.

[^0]: *An excerpt from the book "Spanning Trees and Optimization Problems," by Bang Ye Wu and Kun-Mao Chao (2004), Chapman \& Hall/CRC Press, USA.

