
A note on a 2-approximation algorithm for the MRCT problem∗

Bang Ye Wu Kun–Mao Chao

1 Introduction

Consider the following problem in network design: given an undirected graph with nonnegative
delays on the edges, the goal is to find a spanning tree such that the average delay of communicating
between any pair using the tree is minimized. The delay between a pair of vertices is the sum of
the delays of the edges in the path between them in the tree. Minimizing the average delay is
equivalent to minimizing the total delay between all pairs of vertices using the tree.

In general, when the cost on an edge represents a price for routing messages between its end-
points (such as the delay), the routing cost for a pair of vertices in a given spanning tree is defined
as the sum of the costs of the edges in the unique tree path between them. The routing cost of
the tree itself is the sum over all pairs of vertices of the routing cost for the pair in this tree, i.e.,
C(T) =

∑
u,v dT (u, v), where dT (u, v) is the distance between u and v on T . For an undirected

graph, the minimum routing cost spanning tree (MRCT) is the one with minimum routing cost
among all possible spanning trees.

Unless specified explicitly in this note, a graph G is assumed to be simple and undirected, and
the edge weights are nonnegative. Finding an MRCT in a general edge-weighted undirected graph
is known to be NP-hard. In this note, we shall focus on the 2-approximation algorithms. Before
going into the details, we introduce a term, routing load, which provides us an alternative formula
to compute the routing cost of a tree.

Definition 1: Let T be a tree and e ∈ E(T). Assume X and Y are the two subgraphs that result
by removing e from T . The routing load on edge e is defined by l(T, e) = 2|V (X)| × |V (Y)|.

For any edge e ∈ E(T), let x and y (x ≤ y) be the numbers of vertices in the two subtrees that
result by removing e. The routing load on e is 2xy = 2x(|V (T)| − x). Note that x ≤ n/2, and the
routing load increases as x increases. The following property can be easily shown by the definition.

Fact 1: For any edge e ∈ E(T), if the numbers of vertices in both sides of e are at least δ|V (T)|,
the routing load on e is at least 2δ(1−δ)|V (T)|2. Furthermore, for any edge of a tree T , the routing
load is upper bounded by |V (T)|2

2 .

For a graph G and u, v ∈ V (G), we use SPG(u, v) to denote a shortest path between u and v
in G. In the case where G is a tree, SPG(u, v) denotes the unique simple path between the two
vertices. By defining the routing load, we have the following formula.

Lemma 1: For a tree T with edge length w, C(T) =
∑

e∈E(T) l(T, e)w(e). In addition, C(T) can
be computed in O(n) time.

∗An excerpt from the book “Spanning Trees and Optimization Problems,” by Bang Ye Wu and Kun-Mao Chao
(2004), Chapman & Hall/CRC Press, USA.

1

v
1

v
2

v3

10

v4 v5

5 3 1

Figure 1: An example illustrating the routing loads.

Proof: Let SPT (u, v) denote the simple path between vertices u and v on a tree T .

C(T) =
∑

u,v∈V (T)

dT (u, v)

=
∑

u,v∈V (T)

 ∑

e∈SPT (u,v)

w(e)

=
∑

e∈E(T)

 ∑

u∈V (T)

|{v|e ∈ SPT (u, v)}|

w(e)

=
∑

e∈E(T)

l(T, e)w(e).

To compute C(T), it is sufficient to find the routing load on each edge. This can be done in O(n)
time by rooting T at any node and traversing T in a postorder sequence.

Example 1: Consider the tree T in Figure 1. The distances between vertices are as follows:

dT (v1, v2) = 10 dT (v1, v3) = 5 dT (v1, v4) = 13
dT (v1, v5) = 11 dT (v2, v3) = 15 dT (v2, v4) = 3
dT (v2, v5) = 1 dT (v3, v4) = 18 dT (v3, v5) = 16
dT (v4, v5) = 4

The routing cost of T is two times the sum of the above distances since, for vi and vj , both dT (vi, vj)
and dT (vj , vi) are counted in the cost. We have C(T) = 192.

On the other hand, the routing load of edge (v1, v2) is calculated by

l(T, (v1, v2)) = 2× 2× 3 = 12

since there are two and three vertices in the two sides of the edge, respectively. Similarly, the
routing loads of the other edges are as follows:

l(T, (v1, v3)) = 8 l(T, (v2, v4)) = 8 l(T, (v2, v5)) = 8.

Therefore, by Lemma 1, we have

C(T) = 12× 10 + 8× 5 + 8× 3 + 8× 1 = 192.

2

v1 vnv2 v3

T2

1 1 1
...

T1

v2

v1
v3

5

5
5

...5

5

5vn

Figure 2: Two extreme trees illustrating the impact of the topology.

At the first sight of the definition C(T) =
∑

u,v dT (u, v), one may think that the weights of the
tree edges are the most important to the routing cost of a tree. On the other hand, by Lemma 1,
one can see that the routing loads also play important roles. The routing loads are determined by
the topology of the tree. Therefore the topology is crucial for constructing a tree of small routing
cost. The next example illustrates the impact of the topology by considering two extreme cases.

Example 2: Let T1 be a star (a tree with only one internal node) in which each edge has weight
5, and T2 be a path in which each edge has weight 1 (Figure 2). Suppose that both the two trees
are spanning trees of a graph with n vertices. In the aspect of total edge weight, we can see that
T2 is better than T1. Let’s compute their routing costs. For T1, the routing load of each edge is
2(n− 1) since each edge is incident with a leaf. Therefore, by Lemma 1, C(T1) = 10(n− 1)2.

Let T2 = (v1, v2, . . . , vn). Removing an edge (vi, vi+1) will result in two components of i and
n− i vertices. Therefore the routing loads are

2(n− 1), 2× 2× (n− 2), . . . , 2× i× (n− i), . . . , 2(n− 1).

By Lemma 1,

C(T2) =
∑

1≤i≤n−1

2i(n− i) = n2(n− 1)− n(n− 1)(2n− 1)
3

=
n(n− 1)(n + 1)

3
.

So T2 is much more costly than T1 when n is large.

In the following sections, we shall discuss the complexity and several approximation algorithms
for the MRCT problem. In this note, by mrct(G), we denote a minimum routing cost spanning
tree of a graph G. When there is no ambiguity, we assume that G = (V, E, w) is the given
underlying graph, which is simple, connected, and undirected. We shall also use T̂ and mrct(G)
interchangeably.

2 Approximating by a Shortest-Paths Tree

2.1 A simple analysis

Since all edges have nonnegative length, the distance between two vertices is not decreased by
removing edges from a graph. Obviously dT (u, v) ≥ dG(u, v) for any spanning tree T of G. We can
obtain a trivial lower bound of the routing cost.

Fact 2: C(T̂) ≥ ∑
u,v∈V dG(u, v).

3

Let r be the median of graph G = (V,E, w), i.e., the vertex with minimum total distance to all
vertices. In other words, r minimizing the function f(v) =

∑
u∈V dG(v, u). We can show that a

shortest-paths tree rooted at r is a 2-approximation of an MRCT.

Theorem 2: A shortest-paths tree rooted at the median of a graph is a 2-approximation of an
MRCT of the graph.

Proof: Let r be the median of graph G = (V, E, w) and Y be any shortest-paths tree rooted at
r. Note that the triangle inequality holds for the distances between vertices in any graph without
edges of negative weights. By the triangle inequality, we have dY (u, v) ≤ dY (u, r) + dY (v, r) for
any vertices u and v. Summing up over all pairs of vertices, we obtain

C(Y) =
∑

u

∑
v

dY (u, v)

≤ n
∑

u

dY (u, r) + n
∑

v

dY (v, r)

= 2n
∑

v

dY (v, r).

Since r is the median,
∑

v dG(r, v) ≤ ∑
v dG(u, v) for any vertex u, it follows

∑
v

dG(r, v) ≤ 1
n

∑
u,v

dG(u, v).

Recall that, in a shortest-paths tree, the path from the root to any vertex is a shortest path on the
original graph. We have dY (r, v) = dG(r, v) for each vertex v, and consequently

C(Y) ≤ 2n
∑

v

dG(r, v) ≤ 2
∑
u,v

dG(u, v).

By Fact 2, Y is a 2-approximation of an MRCT.
The median of a graph can be found easily once the distances of all pairs of vertices are known.

By Theorem 2, we can have a 2-approximation algorithm and the time complexity is dominated by
that of finding all-pairs shortest path lengths of the input graph.

Corollary 3: An MRCT of a graph can be approximated with approximation ratio 2 in O(n2 log n+
mn) time.

The approximation ratio in Theorem 2 is tight in the sense that there exists an extreme case
for the inequality asymptotically. Consider a complete graph with unit length on each edge. Any
vertex is a median of the graph and the shortest-paths tree rooted at a median is just a star. The
routing cost of the star can be calculated by

2(n− 1)(n− 2) + 2(n− 1) = 2(n− 1)2.

Since the total distance on the graph is n(n− 1), the ratio is 2− (2/n).
However, the analysis of the extreme case does not imply that the approximation ratio cannot

be improved. It only means that we cannot get a more precise analysis by comparing with the trivial
lower bound. It can be easily verified that, for the above example, the star is indeed an optimal
solution. The problem is that we should compare the approximation solution with the optimal,
but not with the trivial lower bound. Now we introduce another proof of the approximation ratio
of the shortest-paths tree. The analysis technique we used is called solution decomposition, which
is widely used in algorithm design, especially for approximation algorithms.

4

r r1 r2

(a) (b)

Figure 3: A centroid of a tree.

2.2 Solution decomposition

To design an approximation algorithm for an optimization problem, we first suppose that X is an
optimal solution. Then we decompose X and construct another feasible solution Y. To our aim,
Y is designed to be a good approximation of X and belongs to some restricted subset of feasible
solutions, of which the best solution can be found efficiently. The algorithm is designed to find an
optimal solution of the restricted problem, and the approximation ratio is ensured by that of Y.
It should be noted that Y plays a role only in the analysis of approximation ratio, but not in the
designed algorithm. In the following, we show how to design a 2-approximation algorithm by this
method.

For any tree, we can always cut it at a node r such that each branch contains at most half of
the nodes. Such a node is usually called a centroid of the tree in the literature. For example, in
Figure 3(a), vertex r is a centroid of the tree. The tree has nine vertices. Removing r from the
tree will result in three subtrees, and each subtree has no more than four vertices. It can be easily
verified that r is the unique centroid of the tree in (a). However, for the tree in (b), both r1 and r2

are centroids of the tree.
Suppose that r is the centroid of the MRCT T̂ . If we construct a shortest-paths tree Y rooted at

the centroid r, the routing cost will be at most twice that of T̂ . This can be easily shown as follows.
First, if u and v are two nodes not in a same branch, dbT (u, v) = dbT (u, r) + dbT (v, r). Consider
the total distance of all pairs of nodes on T̂ . For any node v, since each branch contains no more
than half of the nodes, the term dbT (v, r) will be counted in the total distance at least n times, n/2
times for v to others, and n/2 times for others to v. Hence, we have C(T̂) ≥ n

∑
v dbT (v, r). Since,

as in the proof of Theorem 2, C(Y) ≤ 2n
∑

v dG(v, r), it follows that C(Y) ≤ 2C(T̂). We have
decomposed the optimal solution T̂ and construct a 2-approximation Y . Of course, there is no way
to know what Y is since the optimal T̂ is unknown. But we have the next result.

Lemma 4: There exists a vertex such that any shortest-paths tree rooted at the vertex is a
2-approximation of the MRCT.

By Lemma 4, we can design a 2-approximation algorithm which constructs a shortest-paths tree
rooted at each vertex and chooses the best of them. Since there are only n vertices and a shortest-
paths tree can be constructed in O(n log n + m) time, the algorithm runs in polynomial time. By
Lemma 1, the routing cost of a tree can be computed in O(n) time. Consequently the algorithm
has time complexity O(n2 log n + mn), the same result as in Corollary 3.

5

