A note on $15 / 8 \& 3 / 2$-approximation algorithms for the MRCT problem*

Bang Ye Wu Kun-Mao Chao

1 Approximating by a General Star

1.1 Separators and general stars

A key point to the 2-approximation in our previous note is the existence of the centroid, which separates a tree into sufficiently small components. To generalize the idea, we define the separator of a tree in Definition 1.

Definition 1: Let T be a spanning tree of G and S be a connected subgraph of T. A branch of S is a connected component of the subgraph that results by removing S from T.

Definition 2: Let $\delta \leq 1 / 2$. A connected subgraph S is a δ-separator of T if $|B| \leq \delta|V(T)|$ for every branch B of S.

A δ-separator S is minimal if any proper subgraph of S is not a δ-separator of T.
Example 1: The tree in Figure 1(a) has 26 vertices in which v_{1} is a centroid. The vertex v_{1} is a minimal $1 / 2$-separator. As shown in (b), each branch contains no more than 13 vertices. But v_{1}, or even the edge $\left(v_{1}, v_{2}\right)$, is not a $1 / 3$-separator because there exists a subtree whose number of vertices is nine, which is greater than $26 / 3$. The path between v_{2} and v_{3} is a minimal $1 / 3$-separator (Frame (c)), and the subgraph that consists of $v_{1}, v_{2}, v_{3}, v_{4}$, and v_{5} is a minimal $1 / 4$-separator (Frame (d)).

The δ-separator can be thought of as a generalization of the centroid of a tree. Obviously, a centroid is a $1 / 2$-separator which contains only one node. Intuitively, a separator is like a routing center of the tree. Starting from any node, there are sufficiently many nodes which can only be reached after reaching the separator. For two vertices i and j in different components separated by S, the path between them can be divided into three subpaths: from i to S, a path in S, and from S to j. Since each component contains no more than δn vertices, the distance $d_{T}(i, S)$ will be counted at least $2(1-\delta) n$ times as we compute the routing cost of T. For each edge e in S, since there are at least δn vertices on either side of the edge, by Fact ??, the routing load on e is at least $2 \delta(1-\delta) n^{2}$. Some notations are given below and illustrated in Figure 2.

Definition 3: Let T be a spanning tree of G and S be a connected subgraph of T. Let u be a vertex in S. The set of branches of S connected to u by an edge of T is denoted by $b r n(T, S, u)$, while $\operatorname{brn}(T, S)$ is for the set of all branches of S. The set of vertices in the branches connected to u is denoted by $V B(T, S, u)=\{u\} \cup\{v \mid v \in B \in \operatorname{brn}(T, S, u)\}$.

The next fact directly follows the definitions.

[^0]

Figure 1: An example of a minimal separator of a tree.

Figure 2: A δ-separator and branches of a tree. The bold line is the separator S and each triangle is a branch of S.

Fact 1: Let S be a minimal δ-separator of T. If v is a leaf of S, then
$|V B(T, S, v)|>\delta|V(T)|$.
A star is a tree with only one internal vertex (center). We define a general star as follows.
Definition 4: Let R be a tree contained in the underlying graph G. A spanning tree T is a general star with core R if each vertex is connected to R by a shortest path.

For an extreme example, a shortest-paths tree is a general star whose core contains only one vertex. By $\operatorname{star}(R)$, we denote the set of all general stars with core R. The intuition of using general stars to approximate an MRCT is described as follows: Assume S is a δ-separator of an optimal tree T. The separator breaks the tree into sufficiently small components (branches). The routing cost of T is the sum of the distances of the $n(n-1)$ pairs of vertices. If we divide the routing cost into two terms, the total distance of vertices in different branches and the total distance of vertices in a same branch, then the inter-branch distance is the larger fraction of the total routing cost. Furthermore, the fraction gets larger and larger when a smaller δ is chosen. If we construct a general star with core S, the routing cost will be very close to the optimal.

Given a core, to construct a general star is just to find a shortest-paths forest, which can be done in $O(n \log n+m)$ time. However, it can be done more efficiently if the all-pairs shortest paths are given.

Lemma 1: Let G be a graph, and let S be a tree contained in G. A spanning tree $T \in \operatorname{star}(S)$ can be found in $O(n)$ time if a shortest path $S P_{G}(v, S)$ is given for every $v \in V(G)$.

Proof: A constructive proof is given below. Starting from $T=S$, we show a procedure which inserts all other vertices into T one by one. At each iteration, the following equality is kept:

$$
\begin{equation*}
d_{T}(v, S)=d_{G}(v, S) \quad \forall v \in V(T) \tag{1}
\end{equation*}
$$

It is easy to see that (1) is true initially. Consider the step of inserting a vertex. Let $S P_{G}(v, S)=$ $\left(v=v_{1}, v_{2}, \ldots, v_{k} \in S\right)$ be a shortest path from v to S, and let v_{j} be the first vertex which is already in T. Set $T \leftarrow T \cup\left(v_{1}, v_{2}, \ldots, v_{j}\right)$. Since $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ is a shortest path from v to $S,\left(v_{a}, v_{a+1}, \ldots, v_{j}\right)$ is also a shortest path from v_{a} to v_{j} for any $a=1, \ldots j$, and (1) is true. It is easy to see that the time complexity is $O(n)$, if a shortest path from v to S is given for every $v \in V$.

Let S be a connected subgraph of a spanning tree T. The path between two vertices v and u in different branches can be divided into three subpaths: the path from v to S, the path contained in S, and the path from u to S. For convenience, we define $d_{T}^{S}(u, v)=w\left(S P_{T}(u, v) \cap S\right)$. Obviously

$$
\begin{equation*}
d_{T}(u, v) \leq d_{T}(v, S)+d_{T}^{S}(u, v)+d_{T}(u, S), \tag{2}
\end{equation*}
$$

and the equality holds if v and u are in different branches. Summing up (2) for all pairs of vertices, we have

$$
C(T) \leq 2 n \sum_{v \in V} d_{T}(v, S)+\sum_{u, v \in V} d_{T}^{S}(u, v) .
$$

By the definition of routing load,

$$
\sum_{u, v \in V} d_{T}^{S}(u, v)=\sum_{e \in E(S)} l(T, e) w(e) .
$$

Suppose that T is a general star with core S. We can establish an upper bound of the routing cost by observing that $d_{T}(v, S)=d_{G}(v, S)$ for any vertex v and $l(T, e) \leq \frac{n^{2}}{2}$ for any edge e (Fact ??).

Lemma 2: Let G be a graph and S be a tree contained in G. If $T \in \operatorname{star}(S), C(T) \leq$ $2 n \sum_{v \in V(G)} d_{G}(v, S)+\left(n^{2} / 2\right) w(S)$.

Now we establish a lower bound of the minimum routing cost. Let S be a minimal δ-separator of a spanning tree T and \mathcal{X} denote the set of the ordered pairs of the vertices not in a same branch of S. For any vertex pair $(u, v) \in \mathcal{X}$,

$$
\begin{equation*}
d_{T}(u, v)=d_{T}(u, S)+d_{T}^{S}(u, v)+d_{T}(v, S) . \tag{3}
\end{equation*}
$$

Summing up (3) for all pairs in \mathcal{X}, we have a lower bound of $C(T)$.

$$
\begin{align*}
C(T) & \geq \sum_{(u, v) \in \mathcal{X}} d_{T}(u, v) \\
& =\sum_{(u, v) \in \mathcal{X}}\left(d_{T}(u, S)+d_{T}(v, S)\right)+\sum_{(u, v) \in \mathcal{X}} d_{T}^{S}(u, v) . \tag{4}
\end{align*}
$$

Since S is a δ-separator, there are at least $(1-\delta) n$ vertices not in the same branch of any vertex v, and we have

$$
\begin{equation*}
\sum_{(u, v) \in \mathcal{X}}\left(d_{T}(u, S)+d_{T}(v, S)\right) \geq 2(1-\delta) n \sum_{v \in V} d_{T}(v, S) . \tag{5}
\end{equation*}
$$

Since $d_{T}^{S}(u, v)=0$ if v and u are in the same branch,

$$
\sum_{(u, v) \in \mathcal{X}} d_{T}^{S}(u, v)=\sum_{v} \sum_{u} d_{T}^{S}(u, v) .
$$

By definition, this is the total routing cost on the edges of S. Rewriting this in terms of routing loads, we have

$$
\begin{equation*}
\sum_{v} \sum_{u} d_{T}^{S}(u, v)=\sum_{e \in E(S)} l(T, e) w(e) . \tag{6}
\end{equation*}
$$

Substituting (5) and (6) in (4), we have

$$
\begin{equation*}
C(T) \geq 2(1-\delta) n \sum_{v \in V} d_{T}(v, S)+\sum_{e \in E(S)} l(T, e) w(e) . \tag{7}
\end{equation*}
$$

Since S is a minimal δ-separator, for any edge of S there are at least δn vertices on either side of the edge. Therefore, $l(T, e) \geq 2 \delta(1-\delta) n^{2}$ for any $e \in E(S)$. Consequently,

$$
\begin{equation*}
\sum_{e \in E(S)} l(T, e) w(e) \geq 2 \delta(1-\delta) n^{2} \sum_{e \in E(S)} w(e)=2 \delta(1-\delta) n^{2} w(S) . \tag{8}
\end{equation*}
$$

Combining (7) and (8), we obtain

$$
\begin{equation*}
C(T) \geq 2(1-\delta) n \sum_{v \in V} d_{T}(v, S)+2 \delta(1-\delta) n^{2} w(S) . \tag{9}
\end{equation*}
$$

Particularly, for the MRCT \widehat{T} we have the next lemma.
Lemma 3: If S is a minimal δ-separator of \widehat{T}, then

$$
C(\widehat{T}) \geq 2(1-\delta) n \sum_{v \in V} d_{\widehat{T}}(v, S)+2 \delta(1-\delta) n^{2} w(S) .
$$

1.2 A 15/8-approximation algorithm

In our previous note, a $1 / 2$-separator is used to derive a 2 -approximation algorithm. The idea is now generalized to show that a better approximation ratio can be obtained by using a $1 / 3$-separator. The following lemma shows the existence of a $1 / 3$-separator. Note that a path may contain only one vertex.

Lemma 4: For any tree T, there is a path $P \subset T$, such that P is a $1 / 3$-separator of T.
Proof: Let n be the number of vertices of T and r be a centroid of T. There are at most 2 branches of r, in which the number of vertices exceed $n / 3$. If there is no such branch, then r is itself a $1 / 3$-separator. Let A be a branch of r with $|V(A)|>n / 3$. Since A itself is a tree with no more than $n / 2$ vertices, a centroid r_{a} of A is a $1 / 2$-separator of A, and each branch of r_{a} contains no more than $n / 4$ vertices of A. If there is another branch B of r such that $|V(B)|>n / 3$, a centroid r_{b} of B can be found such that each branch of r_{b} contains no more than $n / 4$ vertices of B. Consider the path $P=S P_{T}\left(r_{a}, r\right) \cup S P_{T}\left(r, r_{b}\right)$. Since each branch of P contains no more than $n / 3$ vertices, P is a $1 / 3$-separator of T. Note that if B does not exist, then $S P_{T}\left(r_{a}, r\right)$ is a $1 / 3$-separator.

In the following paragraphs, a path separator of a tree T is a path and meanwhile a minimal $1 / 3$-separator of T. Substituting $\delta=1 / 3$ in Lemma 3, we obtain a lower bound of the minimum routing cost.
Corollary 5: If P is a path separator of \widehat{T}, then

$$
C(\widehat{T}) \geq \frac{4 n}{3} \sum_{v \in V} d_{\widehat{T}}(v, P)+\frac{4 n^{2}}{9} w(P) .
$$

Lemma 6: There exist $r_{1}, r_{2} \in V$ such that if $R=S P_{G}\left(r_{1}, r_{2}\right)$ and $T \in \operatorname{star}(R), C(T) \leq$ $(15 / 8) C(\widehat{T})$.

Proof: Let P be a path separator of \widehat{T} with endpoints r_{1} and r_{2}. Since T is a general star with core R, by Lemma 2,

$$
\begin{equation*}
C(T) \leq 2 n \sum_{v \in V(G)} d_{G}(v, R)+\frac{n^{2}}{2} w(R) . \tag{10}
\end{equation*}
$$

Let $S=V B\left(\widehat{T}, P, r_{1}\right) \cup V B\left(\widehat{T}, P, r_{2}\right)$ denote the set of vertices in the branches incident to the two endpoints of P. For any $v \in S$,

$$
\begin{aligned}
d_{G}(v, R) & \leq \min \left\{d_{G}\left(v, r_{1}\right), d_{G}\left(v, r_{2}\right)\right\} \\
& \leq d_{\widehat{T}}(v, P) .
\end{aligned}
$$

For $v \notin S$,

$$
\begin{aligned}
d_{G}(v, R) & \leq \min \left\{d_{G}\left(v, r_{1}\right), d_{G}\left(v, r_{2}\right)\right\} \\
& \leq\left(d_{G}\left(v, r_{1}\right)+d_{G}\left(v, r_{2}\right)\right) / 2 \\
& \leq d_{\widehat{T}}(v, P)+w(P) / 2
\end{aligned}
$$

Then, by Fact $1,|S| \geq \frac{2 n}{3}$, and therefore

$$
\begin{equation*}
\sum_{v \in V} d_{G}(v, R) \leq \sum_{v \in V} d_{\widehat{T}}(v, P)+(n / 6) w(P) \tag{11}
\end{equation*}
$$

Substituting this in (10) and recalling that $w(R) \leq w(P)$ since R is a shortest path between r_{1} and r_{2}, we have

$$
\begin{equation*}
C(T) \leq 2 n \sum_{v \in V} d_{\widehat{T}}(v, P)+\left(5 n^{2} / 6\right) w(P) . \tag{12}
\end{equation*}
$$

Comparing with the lower bound in Corollary 5, we obtain

$$
C(T) \leq \max \{3 / 2,15 / 8\} C(\widehat{T})=(15 / 8) C(\widehat{T}) .
$$

By Lemma 6 we can have a $15 / 8$-approximation algorithm for the MRCT problem. For every r_{1} and r_{2} in V, we construct a shortest path $R=S P_{G}\left(r_{1}, r_{2}\right)$ and a general star $T \in \operatorname{star}(R)$ including the degenerated cases $r_{1}=r_{2}$. The one with the minimum routing cost must be a $15 / 8$ approximation of the MRCT. All-pairs shortest paths can be found in $O\left(n^{3}\right)$ time. A direct method takes $O(n \log n+m)$ time for each pair r_{1} and r_{2}, and therefore $O\left(n^{3} \log n+n^{2} m\right)$ time in total. In the next lemma, it is shown that this can be done in $O\left(n^{3}\right)$.

Lemma 7: Let $G=(V, E, w)$. There is an algorithm which constructs a general star $T \in$ $\operatorname{star}\left(S P_{G}\left(r_{1}, r_{2}\right)\right)$ for every vertex pair r_{1} and r_{2} in $O\left(n^{3}\right)$ time.

Proof: For any $r \in V$, if a general star $T \in \operatorname{star}\left(S P_{G}(r, v)\right)$ for each $v \in V$ can be constructed with total time complexity $O\left(n^{2}\right)$, then all the stars can be constructed in $O\left(n^{3}\right)$ time by applying the algorithm n times for each $r \in V$. By Lemma 1, a star $T \in \operatorname{star}\left(S P_{G}(r, v)\right)$ can be constructed in $O(n)$ time if, for every $u \in V$, a shortest path from u to $S P_{G}(r, v)$ is given. Define $A(u, v)=d_{G}\left(u, S P_{G}(r, v)\right)$ and $B(u, v)$ to be the vertex $k \in S P_{G}(r, v)$ such that $S P_{G}(u, k)=$ $S P_{G}\left(u, S P_{G}(r, v)\right)$. Since the all-pairs shortest paths can be constructed in $O\left(n^{2} \log n+m n\right)$ time at the preprocessing stage, we need to compute $A(u, v)$, as well as $B(u, v)$, in $O\left(n^{2}\right)$ time for all $u, v \in V$.

First, construct a shortest-paths tree S rooted at r. Let parent (v) denote the parent of v in S. It is not hard to see that

$$
A(u, v)=\min \left\{A(\operatorname{parent}(v), u), d_{G}(u, v)\right\}
$$

for $u, v \in V-\{r\}$, and $A(r, u)=d_{G}(r, u)$. Therefore by a top-down traversal of S, we can compute $A(u, v)$ and $B(u, v)$ for all $u, v \in V$ in $O\left(n^{2}\right)$ time.

The next theorem can be derived directly from Lemmas 6 and 7 .
Theorem 8: There is a $15 / 8$-approximation algorithm for the MRCT problem with time complexity $O\left(n^{3}\right)$.

1.3 A 3/2-approximation algorithm

Let P be a path separator of an optimal tree. By Lemma 2 , if $X \in \operatorname{star}(P)$, then

$$
C(X) \leq 2 n \sum_{v \in V} d_{G}(v, P)+\left(n^{2} / 2\right) w(P) .
$$

Since $d_{G}(v, P) \leq d_{\widehat{T}}(v, P)$ for any v, it can be shown that X is a $3 / 2$-approximation solution by Corollary 5 . However, it costs exponential time to try all possible paths. In the following we show that a $3 / 2$-approximation solution can be found if, in addition to the two endpoints of P, we know a centroid of an optimal tree.

Let $P=\left(p_{1}, p_{2}, \ldots, p_{k}\right)$ be a path separator of $\widehat{T}, V_{i}=V B\left(T, P, p_{i}\right)$, and $n_{i}=\left|V_{i}\right|$ for $1 \leq$ $i \leq k$. It is easy to see that a centroid must be in $V(P)$. Let p_{q} be a centroid of \widehat{T}. Construct $R=S P_{G}\left(p_{1}, p_{q}\right) \cup S P_{G}\left(p_{q}, p_{k}\right)$. We assume that R has no cycle. Otherwise, we arbitrarily remove edges to break the cycles. Obviously $w(R) \leq w(P)$. Let $T \in \operatorname{star}(R)$. The next lemma shows the approximation ratio.

Lemma 9: $\quad C(T) \leq(3 / 2) C(\widehat{T})$.
Proof: First, for any $v \in V_{1} \cup V_{q} \cup V_{k}$,

$$
\begin{aligned}
d_{G}(v, R) & \leq \min \left\{d_{G}\left(v, p_{1}\right), d_{G}\left(v, p_{q}\right), d_{G}\left(v, p_{k}\right)\right\} \\
& \leq d_{\widehat{T}}(v, P)
\end{aligned}
$$

For $v \in \bigcup_{1<i<q} V_{i}$,

$$
\begin{aligned}
d_{G}(v, R) & \leq \min \left\{d_{G}\left(v, p_{1}\right), d_{G}\left(v, p_{q}\right)\right\} \\
& \leq\left(d_{G}\left(v, p_{1}\right)+d_{G}\left(v, p_{q}\right)\right) / 2 \\
& \leq d_{\widehat{T}}(v, P)+d_{\widehat{T}}\left(p_{1}, p_{q}\right) / 2 .
\end{aligned}
$$

Similarly, for $v \in \bigcup_{q<i<k} V_{i}$,

$$
d_{G}(v, S) \leq d_{\widehat{T}}(v, P)+d_{\widehat{T}}\left(p_{q}, p_{k}\right) / 2
$$

By Fact 1 and the property of a centroid, we have $\sum_{1<i<q} n_{i} \leq n / 6$ and $\sum_{q<i<k} n_{i} \leq n / 6$. Thus,

$$
\sum_{v \in V} d_{G}(v, R) \leq \sum_{v \in V} d_{\widehat{T}}(v, P)+(n / 12) w(P)
$$

By Lemma 2 and Corollary 5,

$$
\begin{aligned}
C(T) & \leq 2 n \sum_{v \in V} d_{G}(v, R)+\left(n^{2} / 2\right) w(R) \\
& \leq 2 n \sum_{v \in V} d_{\widehat{T}}(v, P)+\left(2 n^{2} / 3\right) w(P) \\
& \leq(3 / 2) C(\widehat{T}) .
\end{aligned}
$$

Theorem 10: There is a $3 / 2$-approximation algorithm with time complexity $O\left(n^{4}\right)$ for the MRCT problem.

Proof: First, the all-pairs shortest paths can be found in $O\left(n^{2} \log n+m n\right)$. For every triple $\left(r_{1}, r_{0}, r_{2}\right)$ of vertices, we construct $R=S P_{G}\left(r_{1}, r_{0}\right) \cup S P_{G}\left(r_{0}, r_{2}\right)$ and $T \in \operatorname{star}(R)$ including the degenerated cases $r_{i}=r_{j}$. By Lemma 9 , at least one of these stars is a $3 / 2$-approximation solution of the MRCT problem, and we can choose the one with the minimum routing cost. For the time complexity, we show that each star can be constructed in $O(n)$ time. By Lemma 1, a $T \in \operatorname{star}(R)$ can be constructed in $O(n)$ time if for every $v \in V$, a shortest path from v to R is given. Define $A(i, j, k)=d_{G}\left(i, S P_{G}(j, k)\right)$ and $B(i, j, k)$ to be the vertex in $S P_{G}(j, k)$ which is closest to i. It is easy to see that $A(i, j, k)$ and $B(i, j, k)$ can be computed in $O\left(n^{4}\right)$ time. ${ }^{1}$ For any $R=S P_{G}\left(r_{1}, r_{0}\right) \cup S P_{G}\left(r_{0}, r_{2}\right)$, since

$$
d_{G}(v, R)=\min \left\{A\left(v, r_{1}, r_{0}\right), A\left(v, r_{0}, r_{2}\right)\right\},
$$

$d_{G}(v, R)$ as well as the vertex in R closest to v can be computed in total $O\left(n^{4}\right)$ time for all $v \in V$ and for all such R at a preprocessing step. Finally, for any spanning tree T, we can compute $C(T)$ in $O(n)$ time. So the total time complexity is $O\left(n^{4}\right)$.

[^1]
[^0]: *An excerpt from the book "Spanning Trees and Optimization Problems," by Bang Ye Wu and Kun-Mao Chao (2004), Chapman \& Hall/CRC Press, USA.

[^1]: ${ }^{1}$ Remark: It can be computed in $O\left(n^{3}\right)$ time by dynamic programming. However the total time complexity is still $O\left(n^{4}\right)$.

